Analytical study of conformable fractional Bohr Hamiltonian with Kratzer potential

被引:19
作者
Hammad, M. M. [1 ]
Yaqut, A. Sh [2 ]
Abdel-Khalek, M. A. [2 ]
Doma, S. B. [2 ]
机构
[1] Damanhour Univ, Fac Sci, Dept Math, Abadiyyat Damanhur, Egypt
[2] Alexandria Univ, Fac Sci, Dept Math, Alexandria, Egypt
关键词
Bohr Hamiltonian; Triaxial nuclei; Z(5) critical point; Quantum shape phase transitions; Conformable fractional calculus; Nikiforov-Uvarov method; NUCLEAR-DATA SHEETS; CRITICAL-POINT SYMMETRY; MODEL DESCRIPTION; PROLATE; E(5);
D O I
10.1016/j.nuclphysa.2021.122307
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
New analytical solutions of the conformable fractional Bohr Hamiltonian appropriate for triaxial nuclei, involving the Kratzer potential in beta-part of the collective nuclear potential and the steep harmonic oscillator in gamma-part, are developed. The analytical expressions for energy spectra and wave functions are derived using a new algorithm of the conformable fractional Nikiforov-Uvarov method. The relationship between the conformable fractional spectra of the Kratzer potential and the spectrum of the Z(5) model is discussed. The evolution of the spectra in correspondence with the fractional derivative order and the potential parameters is investigated. The normalized calculated spectra and B(E2) transition rates are compared with the available experimental data and the existing theoretical predictions from various models. The predictions produced well the experimental data for Xe-120,126,128,(130), Pt-192,194,(196), and Pd-112,114,(116). (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 70 条
[61]  
Singh B., 2001, Nuclear Data Sheets, V93, P33, DOI 10.1006/ndsh.2001.0012
[62]   Nuclear data sheets for A=194 [J].
Singh, Balraj .
NUCLEAR DATA SHEETS, 2006, 107 (06) :1531-+
[63]   Analytical solution of Bohr Hamiltonian and extended form of sextic potential using bi-confluent Heun functions [J].
Sobhani, H. ;
Ikot, A. N. ;
Hassanabadi, H. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (05)
[64]   γ-Unstable Bohr Hamiltonian with sextic potential for odd-A nuclei [J].
Sobhani, Hadi ;
Hassanabadi, Hassan ;
Bonatsos, Dennis ;
Pan, Feng ;
Draayer, Jerry P. .
NUCLEAR PHYSICS A, 2020, 1002
[65]  
Sobhani H, 2020, EUR PHYS J A, V56, DOI 10.1140/epja/s10050-020-00048-5
[66]   Non-degenerate γ-unstable Bohr Hamiltonian considering Killingbeck potential [J].
Sobhani, Hadi ;
Hassanabadi, Hassan .
NUCLEAR PHYSICS A, 2019, 983 :229-239
[67]  
Sobhani H, 2018, EUR PHYS J PLUS, V133, DOI 10.1140/epjp/i2018-12269-5
[68]   Investigation of Bohr Hamiltonian in presence of Killingbeck potential using bi-confluent Heun functions [J].
Sobhani, Hadi ;
Hassanabadi, Hassan ;
Chung, Won Sang .
NUCLEAR PHYSICS A, 2018, 973 :33-47
[69]   Bohr Hamiltonian with Davidson potential for triaxial nuclei [J].
Yigitoglu, I. ;
Bonatsos, Dennis .
PHYSICAL REVIEW C, 2011, 83 (01)
[70]   Critical point symmetry for the spherical to triaxially deformed shape phase transition [J].
Zhang, Yu ;
Pan, Feng ;
Luo, Yan-An ;
Draayer, J. P. .
PHYSICS LETTERS B, 2015, 751 :423-429