Harnessing Generative Adversarial Networks to Generate Synthetic Mitosis Images for Classification of Cell Images
被引:1
作者:
Gozes, Gal
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Fac Engn, Dept Biomed Engn, Med Image Proc Lab, Tel Aviv, IsraelTel Aviv Univ, Fac Engn, Dept Biomed Engn, Med Image Proc Lab, Tel Aviv, Israel
Gozes, Gal
[1
]
Shkolyar, Anat
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Fac Engn, Dept Biomed Engn, Med Image Proc Lab, Tel Aviv, IsraelTel Aviv Univ, Fac Engn, Dept Biomed Engn, Med Image Proc Lab, Tel Aviv, Israel
Shkolyar, Anat
[1
]
Gefen, Amit
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Fac Engn, Dept Biomed Engn, Musculoskeletal Biomech Lab, Tel Aviv, IsraelTel Aviv Univ, Fac Engn, Dept Biomed Engn, Med Image Proc Lab, Tel Aviv, Israel
Gefen, Amit
[2
]
Benayahu, Dafna
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Sch Med, Dept Cell & Dev Biol, Tel Aviv, IsraelTel Aviv Univ, Fac Engn, Dept Biomed Engn, Med Image Proc Lab, Tel Aviv, Israel
Benayahu, Dafna
[3
]
Greenspan, Hayit
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Fac Engn, Dept Biomed Engn, Med Image Proc Lab, Tel Aviv, IsraelTel Aviv Univ, Fac Engn, Dept Biomed Engn, Med Image Proc Lab, Tel Aviv, Israel
Greenspan, Hayit
[1
]
机构:
[1] Tel Aviv Univ, Fac Engn, Dept Biomed Engn, Med Image Proc Lab, Tel Aviv, Israel
[2] Tel Aviv Univ, Fac Engn, Dept Biomed Engn, Musculoskeletal Biomech Lab, Tel Aviv, Israel
[3] Tel Aviv Univ, Sch Med, Dept Cell & Dev Biol, Tel Aviv, Israel
来源:
MEDICAL IMAGING 2021 - DIGITAL PATHOLOGY
|
2021年
/
11603卷
基金:
以色列科学基金会;
关键词:
Mitosis;
Classification;
CNN;
GAN;
Cell imaging;
D O I:
10.1117/12.2580897
中图分类号:
O43 [光学];
学科分类号:
070207 ;
0803 ;
摘要:
The task of detecting and tracking of mitosis is important in many biomedical areas such as cancer and stem cell research. This task becomes complex when done in a high-density cell array, largely due to an extremely imbalanced data, with a very small number of proliferating cells in each image. Using the fact that before proliferating, cells seems to get rounder and brighter, our group extracted bright blobs in each image and considered the patch around each blob as a candidate for mitosis. These candidates were labeled and divided into training, validation and test sets, and used for training of a Convolutional Neural Network (CNN). In the current work, in order to overcome the small number of mitosis samples in the training set, we generated synthetic patches of mitosis using Generative Adversarial Networks (GANs). Trying to predict the labels of the test set candidates using a CNN trained by both real and the synthetically generated images showed an increase in both sensitivity and specificity, in comparison to a CNN trained only on real examples.
机构:
AT&T Bell Labs, Res, Speech & Image Proc Serv Res Lab, Red Bank, NJ 07701 USAAT&T Bell Labs, Res, Speech & Image Proc Serv Res Lab, Red Bank, NJ 07701 USA
Lecun, Y
;
Bottou, L
论文数: 0引用数: 0
h-index: 0
机构:AT&T Bell Labs, Res, Speech & Image Proc Serv Res Lab, Red Bank, NJ 07701 USA
Bottou, L
;
Bengio, Y
论文数: 0引用数: 0
h-index: 0
机构:AT&T Bell Labs, Res, Speech & Image Proc Serv Res Lab, Red Bank, NJ 07701 USA
Bengio, Y
;
Haffner, P
论文数: 0引用数: 0
h-index: 0
机构:AT&T Bell Labs, Res, Speech & Image Proc Serv Res Lab, Red Bank, NJ 07701 USA
机构:
AT&T Bell Labs, Res, Speech & Image Proc Serv Res Lab, Red Bank, NJ 07701 USAAT&T Bell Labs, Res, Speech & Image Proc Serv Res Lab, Red Bank, NJ 07701 USA
Lecun, Y
;
Bottou, L
论文数: 0引用数: 0
h-index: 0
机构:AT&T Bell Labs, Res, Speech & Image Proc Serv Res Lab, Red Bank, NJ 07701 USA
Bottou, L
;
Bengio, Y
论文数: 0引用数: 0
h-index: 0
机构:AT&T Bell Labs, Res, Speech & Image Proc Serv Res Lab, Red Bank, NJ 07701 USA
Bengio, Y
;
Haffner, P
论文数: 0引用数: 0
h-index: 0
机构:AT&T Bell Labs, Res, Speech & Image Proc Serv Res Lab, Red Bank, NJ 07701 USA