Maximum-likelihood estimators in the mixed fractional Brownian motion

被引:19
作者
Xiao, Wei-Lin [1 ]
Zhang, Wei-Guo [1 ]
Zhang, Xi-Li [1 ,2 ]
机构
[1] S China Univ Technol, Sch Business Adm, Guangzhou 510641, Guangdong, Peoples R China
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
基金
中国国家自然科学基金;
关键词
maximum-likelihood estimation; mixed fractional Brownian motion; strong consistency; asymptotic normality; Malliavin calculus; MEMORY;
D O I
10.1080/02331888.2010.541254
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper deals with the problem of estimating the parameters for the mixed fractional Brownian motion from discrete observations based on the maximum-likelihood method. The asymptotic properties, namely consistency and asymptotic normality, are presented for these estimates. By adapting the optimization algorithm, these two estimates can be efficiently computed by the computer software. The performance of the maximum-likelihood method is tested on simulated mixed fractional Brownian motion data sets, and is compared with the approach proposed by Filatova [Mixed fractional Brownian motion: Some related questions for computer network traffic modelling, International Conference on Signals and Electronic Systems, Krakow, Poland, 2008, pp. 393-396].
引用
收藏
页码:73 / 85
页数:13
相关论文
共 24 条
[1]   Maximum-likelihood estimators and random walks in long memory models [J].
Bertin, Karine ;
Torres, Soledad ;
Tudor, Ciprian A. .
STATISTICS, 2011, 45 (04) :361-374
[2]   Arbitrage in fractional Brownian motion models [J].
Cheridito, P .
FINANCE AND STOCHASTICS, 2003, 7 (04) :533-553
[3]   Mixed fractional Brownian motion [J].
Cheridito, P .
BERNOULLI, 2001, 7 (06) :913-934
[4]   Specification analysis of affine term structure models [J].
Dai, Q ;
Singleton, KJ .
JOURNAL OF FINANCE, 2000, 55 (05) :1943-1978
[5]   Estimators of long-memory: Fourier versus wavelets [J].
Fay, Gilles ;
Moulines, Eric ;
Roueff, Francois ;
Taqqu, Murad S. .
JOURNAL OF ECONOMETRICS, 2009, 151 (02) :159-177
[6]   Mixed fractional Brownian motion: some related questions for computer network traffic modeling [J].
Filatova, Daria .
ICSES 2008 INTERNATIONAL CONFERENCE ON SIGNALS AND ELECTRONIC SYSTEMS, CONFERENCE PROCEEDINGS, 2008, :393-396
[7]   LARGE-SAMPLE PROPERTIES OF PARAMETER ESTIMATES FOR STRONGLY DEPENDENT STATIONARY GAUSSIAN TIME-SERIES [J].
FOX, R ;
TAQQU, MS .
ANNALS OF STATISTICS, 1986, 14 (02) :517-532
[8]  
Henry ., 2002, Applied Financial Economics, V12, P725
[9]   An algorithmic introduction to numerical simulation of stochastic differential equations [J].
Higham, DJ .
SIAM REVIEW, 2001, 43 (03) :525-546
[10]  
Lax Melvin., 2006, Random processes in physics and finance