Heterostructures in GaP-based free-standing nanowires on Si substrates

被引:0
|
作者
Tateno, Kouta [1 ]
Zhang, Guoqiang [1 ]
Nakano, Hidetoshi [1 ]
机构
[1] NTT Corp, NTT Basic Res Labs, Kanagawa 2430198, Japan
来源
QUANTUM DOTS, PARTICLES, AND NANOCLUSTERS VI | 2009年 / 7224卷
关键词
nanowire; heterostructure; III-V compounds; Silicon; vapor-liquid-solid growth; III-V NANOWIRES; GROWTH; NANOSTRUCTURES; GAAS;
D O I
10.1117/12.810448
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Vertical III-V compound semiconductor nanowires grown on Si(111) surfaces have been attracting interest for application to opto-electronic integrated circuits (OEICs). In nanowire growth, heterostructures in the axial and radial direction can be obtained by combining different materials with different growth conditions. These effects should make it possible to fabricate complicated and functional three-dimensional structures in a bottom-up manner. These advances should lead to new types of nanodevices. We describe the formation of several heterostructures using GaP-based nanowires on Si(111). The catalysts used were Au particles obtained from Au colloids. We obtained GaP/GaAs/GaP nanowires bent at thinned GaAs nodes, InP egg-like structures in GaP nanowires, core-multishell Ga(In)P/GaAs(or air-gap)/GaP nanowires with flat tops, and GaAs/AlInAs capped GaInAs nanowires for long-wavelength photon emission. These structures were successively grown on vertical GaP nanowires on Si(111) substrates.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Multi-quantum structures of GaAs/AlGaAs free-standing nanowires
    Tateno, K
    Gotoh, H
    Watanabe, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (4B): : 3568 - 3572
  • [22] Growth and optical properties of catalyst-free InP nanowires on Si (100) substrates
    Yu, Shuzhen
    Miao, Guoqing
    Jin, Yixin
    Zhang, Ligong
    Song, Hang
    Jiang, Hong
    Li, Zhiming
    Li, Dabing
    Sun, Xiaojuan
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (05) : 1540 - 1543
  • [23] Free-standing AlxGa1-xAs heterostructures by gas-phase etching of germanium
    Cole, Garrett D.
    Bai, Yu
    Aspelmeyer, Markus
    Fitzgerald, Eugene A.
    APPLIED PHYSICS LETTERS, 2010, 96 (26)
  • [24] Ease of control and switching between ordered free-standing arrays of ZnO nanotubes and nanorods on conductive transparent substrates
    Ren, Xin
    Jiang, Chuan-Hai
    SOLID STATE COMMUNICATIONS, 2011, 151 (01) : 51 - 54
  • [25] Large-area fabrication of equidistant free-standing Si crystals on nanoimprinted glass
    Sontheimer, Tobias
    Rudigier-Voigt, Eveline
    Bockmeyer, Matthias
    Klimm, Carola
    Schubert-Bischoff, Peter
    Becker, Christiane
    Rech, Bernd
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2011, 5 (10-11): : 376 - 378
  • [26] Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires
    Liao, Gaohua
    Luo, Ning
    Yang, Zhihu
    Chen, Keqiu
    Xu, H. Q.
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (09)
  • [27] Ubiquitous organic molecule-based free-standing nanowires with ultra-high aspect ratios
    Kamiya, Koshi
    Kayama, Kazuto
    Nobuoka, Masaki
    Sakaguchi, Shugo
    Sakurai, Tsuneaki
    Kawata, Minori
    Tsutsui, Yusuke
    Suda, Masayuki
    Idesaki, Akira
    Koshikawa, Hiroshi
    Sugimoto, Masaki
    Lakshmi, G. B. V. S.
    Avasthi, D. K.
    Seki, Shu
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [28] Controlled Ligand-Free Growth of Free-Standing CsPbBr3 Perovskite Nanowires
    Huang, Ziyun
    Zhang, Zhaojun
    Lamers, Nils
    Baranov, Dmitry
    Wallentin, Jesper
    ACS OMEGA, 2024, 9 (49): : 48390 - 48396
  • [29] Spin relaxation in Si nanoclusters embedded in free-standing SiGe nanocolumns
    Stepina, N. P.
    Zinovieva, A. F.
    Dvurechenskii, A. V.
    Noda, Shuichi
    Molla, Md. Zaman
    Samukawa, Seiji
    APPLIED PHYSICS LETTERS, 2017, 110 (20)
  • [30] GaAs/GaP Quantum-Well Heterostructures Grown on Si Substrates
    Abramkin, D. S.
    Petrushkov, M. O.
    Putyato, M. A.
    Semyagin, B. R.
    Emelyanov, E. A.
    Preobrazhenskii, V. V.
    Gutakovskii, A. K.
    Shamirzaev, T. S.
    SEMICONDUCTORS, 2019, 53 (09) : 1143 - 1147