High-efficiency chaotic time series prediction based on time convolution neural network

被引:68
作者
Cheng, Wei [1 ]
Wang, Yan [1 ]
Peng, Zheng [1 ]
Ren, Xiaodong [1 ]
Shuai, Yubei [1 ]
Zang, Shengyin [1 ]
Liu, Hao [1 ]
Cheng, Hao [1 ]
Wu, Jiagui [1 ]
机构
[1] Southwest Univ, Coll Artificial Intelligence, Chongqing 400715, Peoples R China
关键词
Chaos; Time series analysis; Neural networks; SYSTEMS;
D O I
10.1016/j.chaos.2021.111304
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The prediction of chaotic time series is important for both science and technology. In recent years, this type of prediction has improved significantly with the development of deep learning. Here, we propose a temporal convolutional network (TCN) model for the prediction of chaotic time series. Our TCN model offers highly stable training, high parallelism, and flexible perception field. Comparative experiments with the classic long short-term memory (LSTM) network and hybrid (CNN-LSTM) neural network show that the TCN model can reduce the training time by a factor of more than two. Furthermore, the network can focus on more important information because of the attention mechanism. By embedding the convolu-tional block attention module (CBAM), which combines the spatial and channel attention mechanisms, we obtain a new model, TCN-CBAM. This model is comprehensively better than the LSTM, CNN-LSTM, and TCN models in the prediction of classical systems (Chen system, Lorenz system, and sunspots). In terms of prediction accuracy, the TCN-CBAM model obtains better results for the four main evaluation indicators: root mean square error, mean absolute error, coefficient of determination, and Spearman's correlation coefficient, with a maximum increase of 41.4%. The TCN-CBAM has also the shortest training times among the previous classic four models. (c) 2021 Published by Elsevier Ltd.
引用
收藏
页数:10
相关论文
共 46 条
[1]   How Intense Are You? Predicting Intensities of Emotions and Sentiments using Stacked Ensemble [J].
Akhtar, Md Shad ;
Ekbal, Asif ;
Cambria, Erik .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2020, 15 (01) :64-75
[2]  
[Anonymous], 2016, CoRR. abs/1511.07122
[3]   Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography [J].
Antonik, Piotr ;
Gulina, Marvyn ;
Pauwels, Jael ;
Massar, Serge .
PHYSICAL REVIEW E, 2018, 98 (01)
[4]  
Bai S., 2018, CoRR
[5]   Evaluating a New International Risk-Prediction Tool in IgA Nephropathy [J].
Barbour, Sean J. ;
Coppo, Rosanna ;
Zhang, Hong ;
Liu, Zhi-Hong ;
Suzuki, Yusuke ;
Matsuzaki, Keiichi ;
Katafuchi, Ritsuko ;
Er, Lee ;
Espino-Hernandez, Gabriela ;
Kim, S. Joseph ;
Reich, Heather N. ;
Feehally, John ;
Cattran, Daniel C. ;
Russo, M. L. ;
Troyanov, S. ;
Cook, H. T. ;
Roberts, I. ;
Tesar, V. ;
Maixnerova, D. ;
Lundberg, S. ;
Gesualdo, L. ;
Emma, F. ;
Fuiano, L. ;
Beltrame, G. ;
Rollino, C. ;
Amore, A. ;
Camilla, R. ;
Peruzzi, L. ;
Praga, M. ;
Feriozzi, S. ;
Polci, R. ;
Segoloni, G. ;
Colla, L. ;
Pani, A. ;
Piras, D. ;
Angioi, A. ;
Cancarini, G. ;
Ravera, S. ;
Durlik, M. ;
Moggia, E. ;
Ballarin, J. ;
Di Giulio, S. ;
Pugliese, F. ;
Serriello, I. ;
Caliskan, Y. ;
Sever, M. ;
Kilicaslan, I. ;
Locatelli, F. ;
Del Vecchio, L. ;
Wetzels, J. F. M. .
JAMA INTERNAL MEDICINE, 2019, 179 (07) :942-952
[6]   The challenges of modeling and forecasting the spread of COVID-19 [J].
Bertozzi, Andrea L. ;
Franco, Elisa ;
Mohler, George ;
Short, Martin B. ;
Sledge, Daniel .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (29) :16732-16738
[7]   Development of advanced artificial intelligence models for daily rainfall prediction [J].
Binh Thai Pham ;
Lu Minh Le ;
Tien-Thinh Le ;
Kien-Trinh Thi Bui ;
Vuong Minh Le ;
Hai-Bang Ly ;
Prakash, Indra .
ATMOSPHERIC RESEARCH, 2020, 237
[8]   Multiobjective Evolution of Fuzzy Rough Neural Network via Distributed Parallelism for Stock Prediction [J].
Cao, Bin ;
Zhao, Jianwei ;
Lv, Zhihan ;
Gu, Yu ;
Yang, Peng ;
Halgamuge, Saman K. .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (05) :939-952
[9]   Optimizing Markovian modeling of chaotic systems with recurrent neural networks [J].
Cechin, Adelmo L. ;
Pechmann, Denise R. ;
de Oliveira, Luiz P. L. .
CHAOS SOLITONS & FRACTALS, 2008, 37 (05) :1317-1327
[10]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466