ON THE DARBOUX TRANSFORMATIONS OF THE DRINFELD-SOKOLOV-SATSUMA-HIROTA COUPLED KDV SYSTEM

被引:3
作者
Wang, Ya'nan [1 ]
Niu, Xiao-Xing [2 ]
Liu, Q. P. [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
[2] Taiyuan Univ Technol, Sch Math, Taiyuan 030024, Peoples R China
关键词
Darboux transformation; coupled Korteweg-de Vries system; exact solutions; RECURSION OPERATORS; SOLITON-SOLUTIONS;
D O I
10.1016/S0034-4877(22)00050-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A coupled Korteweg-de Vries system known as the Drinfeld-Sokolov-Satsuma-Hirota system is reconsidered. The Darboux transformation for this system constructed by Geng and Li [5] is understood by showing that it is equivalent to a particular reduction of the two-fold Darboux transformation. The iterations of this Darboux transformation are considered and the solutions of the Drinfeld-Sokolov-Satsuma-Hirota system are given in terms of determinants. As applications, some explicit solutions are calculated.
引用
收藏
页码:49 / 62
页数:14
相关论文
共 14 条
[1]  
[Anonymous], 1981, P SL SOB SEM NOV
[2]   Auto-Backlund transformations and superposition formulas for solutions of Drinfeld-Sokolov systems [J].
Balakhnev, M. Yu. ;
Demskoi, D. K. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (08) :3625-3637
[3]  
DRINFELD VG, 1981, DOKL AKAD NAUK SSSR+, V258, P11
[4]   Classification of certain integrable coupled potential KdV and modified KdV-type equations [J].
Foursov, MV .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (09) :6173-6185
[5]   Darboux transformation of the Drinfeld-Sokolov-Satsuma-Hirota system and exact solutions [J].
Geng, Xianguo ;
Li, Ruomeng .
ANNALS OF PHYSICS, 2015, 361 :215-225
[6]  
Gürses M, 1999, J MATH PHYS, V40, P6473, DOI 10.1063/1.533102
[7]   Integrable KdV systems:: Recursion operators of degree four [J].
Gürses, M ;
Karasu, A .
PHYSICS LETTERS A, 1999, 251 (04) :247-249
[8]   SOLITON-SOLUTIONS OF A COUPLED KORTEWEG-DEVRIES EQUATION [J].
HIROTA, R ;
SATSUMA, J .
PHYSICS LETTERS A, 1981, 85 (8-9) :407-408
[9]  
Karasu A, 2001, J PHYS A-MATH GEN, V34, P7355, DOI 10.1088/0305-4470/34/36/315
[10]  
Kersten P., 2002, LIE GROUPS GEOMETRIC, V37, P151