LINEAR ALMOST POISSON STRUCTURES AND HAMILTON-JACOBI EQUATION. APPLICATIONS TO NONHOLONOMIC MECHANICS

被引:66
作者
de Leon, Manuel [1 ]
Carlos Marrero, Juan [2 ]
Martin de Diego, David [1 ]
机构
[1] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28006, Spain
[2] Univ La Laguna, Fac Matemat, Dept Matemat Fundamental, ULL CSIC Geometria Diferencial & Mecan Geometria, Tenerife, Canary Islands, Spain
关键词
Hamilton-Jacobi equation; linear almost Poisson structure; almost differential; skew-symmetric algebroid; orbit theorem; Hamiltonian morphism; nonholonomic mechanical system; LIE ALGEBROIDS; SYSTEMS; DYNAMICS; SYMMETRY; REDUCTION;
D O I
10.3934/jgm.2010.2.159
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:159 / 198
页数:40
相关论文
共 47 条
  • [1] Abraham R., 1978, Foundations of Mechanics
  • [2] Agrachev A. A., 2004, Control Theory and Optimization, V87
  • [3] [Anonymous], DIENST ANAL MECH TW
  • [4] [Anonymous], J APPL MATH PHYS
  • [5] [Anonymous], 1972, CONNECTIONS CURVATUR
  • [6] [Anonymous], J APPL MATH PHYS
  • [7] Nonholonomic mechanical systems with symmetry
    Bloch, AM
    Krishnaprasad, PS
    Marsden, JE
    Murray, RM
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1996, 136 (01) : 21 - 99
  • [8] On mechanical control systems with nonholonomic constraints and symmetries
    Bullo, F
    Zefran, M
    [J]. SYSTEMS & CONTROL LETTERS, 2002, 45 (02) : 133 - 143
  • [9] On almost-Poisson structures in nonholonomic mechanics
    Cantrijn, F
    de León, M
    de Diego, DM
    [J]. NONLINEARITY, 1999, 12 (03) : 721 - 737
  • [10] Geometric Hamilton-Jacobi theory
    Carinena, Jose F.
    Gracia, Xavier
    Marmo, Giuseppe
    Martinez, Eduardo
    Munoz-Lecanda, Miguel C.
    Roman-Roy, Narciso
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (07) : 1417 - 1458