Existence of multiple positive solutions for a truncated Kirchhoff-type system involving weight functions and concave-convex nonlinearities

被引:1
作者
Lou, Qingjun [1 ]
Qin, Yupeng [2 ]
机构
[1] Univ Jinan, Sch Math Sci, Jinan, Peoples R China
[2] Henan Inst Technol, Sch Sci, Xinxiang, Henan, Peoples R China
关键词
Kirchhoff system; Multiple positive solutions; Nehari manifold; NEHARI MANIFOLD; EQUATION; BEHAVIOR;
D O I
10.1186/s13662-020-02556-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the combined effect of concave-convex nonlinearities on the number of solutions for an indefinite truncated Kirchhoff-type system involving the weight functions. When alpha+beta< 4+, since the concave-convex nonlinearities do not satisfy the mountain pass geometry, it is difficult to obtain a bounded Palais-Smale sequence by the usual mountain pass theorem. To overcome the problem, we properly introduce a method of Nehari manifold and then establish the existence of multiple positive solutions when the pair of the parameters is under a certain range.
引用
收藏
页数:13
相关论文
共 24 条
[1]   Existence results for a class of Kirchhoff type systems with Caffarelli-Kohn-Nirenberg exponents [J].
Afrouzi, G. A. ;
Zahmatkesh, H. ;
Shakeri, S. .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (01) :83-94
[2]   Nonlocal fourth-order Kirchhoff systems with variable growth: low and high energy solutions [J].
Afrouzi, Ghasem A. ;
Mirzapour, M. ;
Radulescu, Vicentiu D. .
COLLECTANEA MATHEMATICA, 2016, 67 (02) :207-223
[3]   Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation [J].
Agarwal, P. ;
El-Sayed, A. A. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 500 :40-49
[4]  
Agarwal P., 2017, ADV REAL COMPLEX ANA
[5]   A semilinear elliptic system involving nonlinear boundary condition and sign-changing weight function [J].
Brown, K. J. ;
Wu, Tsung-Fang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (02) :1326-1336
[6]   The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function [J].
Brown, KJ ;
Zhang, YP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :481-499
[7]   The Nehari manifold for indefinite semilinear elliptic systems involving critical exponent [J].
Chen, Ching-yu ;
Wu, Tsung-fang .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (22) :10817-10828
[8]   The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions [J].
Chen, Ching-yu ;
Kuo, Yueh-cheng ;
Wu, Tsung-fang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) :1876-1908
[9]   VARIATIONAL PRINCIPLE [J].
EKELAND, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) :324-353
[10]   Multiplicity of solutions for a class of Kirchhoff type problems [J].
He, Xiao-ming ;
Zou, Wen-ming .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (03) :387-394