Transient analysis and process optimization of the spatial atomic layer deposition using the dynamic mesh method

被引:23
作者
Cong, Wentao [1 ]
Li, Zoushuang [1 ]
Cao, Kun [1 ]
Feng, Guang [2 ]
Chen, Rong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Digital Mfg Equipment & Technol, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatial ALD; Computational fluid dynamics; Chemical kinetics; Process optimization; Dynamic mesh method; HIGH-THROUGHPUT; FLUID-DYNAMICS; OXIDE; PRESSURE; ALUMINA; KINETICS; AL2O3; TMA; ALD;
D O I
10.1016/j.ces.2020.115513
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Spatial atomic layer deposition (ALD) is acknowledged as a high-throughput thin film preparation technique. Since the films are obtained at a high relative velocity of the substrate, the dynamic flow field distribution is more intricate compared to the traditional ALD. In this paper, by adopting the dynamic mesh method, a mathematical model combing fluid dynamics with chemical kinetics is established. Quantitative analysis is carried out to evaluate how different parameters influence precursor intermixing through this dynamic model. The viscous dragging effect caused by the relative movement of the substrate is also investigated. The good agreement between the mathematical results and the experimental data demonstrates the effectiveness of the dynamic model. To obtain a uniform thin film with a relatively high deposition rate and precursor usage, the motion speed of the substrate is also optimized. This numerical model has momentous guidance to the further process optimization and the spatial ALD system design. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 42 条
[1]   Spatial atomic layer deposition of ZnO/TiO2 nanolaminates [J].
Chen, Rong ;
Lin, Ji-Long ;
He, Wen-Jie ;
Duan, Chen-Long ;
Peng, Qi ;
Wang, Xiao-Lei ;
Shan, Bin .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2016, 34 (05)
[2]   Measuring reversible photomechanical switching rates for a molecule at a surface [J].
Comstock, Matthew J. ;
Levy, Niv ;
Cho, Jongweon ;
Berbil-Bautista, Luis ;
Crommie, Michael F. ;
Poulsen, Daniel A. ;
Frechet, Jean M. J. .
APPLIED PHYSICS LETTERS, 2008, 92 (12)
[3]   Influence of the Geometric Parameters on the Deposition Mode in Spatial Atomic Layer Deposition: A Novel Approach to Area-Selective Deposition [J].
de la Huerta, Cesar Masse ;
Viet Huong Nguyen ;
Dedulle, Jean-Marc ;
Bellet, Daniel ;
Jimenez, Carmen ;
Munoz-Rojas, David .
COATINGS, 2019, 9 (01)
[4]  
Duan C., 2015, J. Vac. Sci. Technol. A, V34, p01A108, DOI [DOI 10.1116/1.4932564, 10.1116/1.4932564]
[5]   Selective Area Spatial Atomic Layer Deposition of ZnO, Al2O3, and Aluminum-Doped ZnO Using Poly(vinyl pyrrolidone) [J].
Ellinger, Carolyn R. ;
Nelson, Shelby F. .
CHEMISTRY OF MATERIALS, 2014, 26 (04) :1514-1522
[6]   Atomic-scale simulation of ALD chemistry [J].
Elliott, Simon D. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2012, 27 (07)
[7]   Evaluating operating conditions for continuous atmospheric atomic layer deposition using a multiple slit gas source head [J].
Fitzpatrick, P. Ryan ;
Gibbs, Zachary M. ;
George, Steven M. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2012, 30 (01)
[8]   Computational Fluid Dynamics simulation of the ALD of alumina from TMA and H2O in a commercial reactor [J].
Gakis, G. P. ;
Vergnes, H. ;
Scheid, E. ;
Vahlas, C. ;
Caussat, B. ;
Boudouvis, A. G. .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2018, 132 :795-811
[9]   Detailed investigation of the surface mechanisms and their interplay with transport phenomena in alumina atomic layer deposition from TMA and water [J].
Gakis, Georgios P. ;
Vergnes, Hugues ;
Scheid, Emmanuel ;
Vahlas, Constantin ;
Boudouvis, Andreas G. ;
Caussat, Brigitte .
CHEMICAL ENGINEERING SCIENCE, 2019, 195 :399-412
[10]   Atomic Layer Deposition: An Overview [J].
George, Steven M. .
CHEMICAL REVIEWS, 2010, 110 (01) :111-131