Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition

被引:28
作者
Rodriguez, Rodrigo [1 ]
Edison, Ruth A. [2 ]
Stephens, Ryan M. [6 ]
Sun, Ho-Hyun [1 ]
Heller, Adam [1 ,5 ]
Mullins, C. Buddie [1 ,3 ,4 ,5 ]
机构
[1] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[3] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[4] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA
[5] Univ Texas Austin, Ctr Electrochem, Austin, TX 78712 USA
[6] Shell Int Explorat & Prod Inc, Houston, TX 77082 USA
基金
美国国家科学基金会;
关键词
CYCLING EFFICIENCY; METAL ANODE; LI; INTERPHASE; BATTERIES; SURFACE; GROWTH; STABILITY; CHEMISTRY; PERFORMANCE;
D O I
10.1039/c9ta10929c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Imaging of lithium electrodepositions revealed that in the absence of a compressed porous separator, achieved via a plastic washer, dendrite-free lithium was deposited from glyme solutions of 1 M LiNO3. When the 1 M LiNO3 in glyme was coupled with a 1 M LiFSI salt, high coulombic efficiencies were also attainable in both Li|Cu and anode-free LFP|Cu cells. However, dendrite resurgence was observed in cycled lithium coin cell electrodes when a porous separator was utilized. This was attributed to the restriction of Li+ flux to the electrode surface induced by the porous and tortuous structure of the polymer separator. At these pores, localized current densities, which exceeded the applied current density, and a non-uniform Li+ flux resulted in dendritic lithium growth. Replacement of the separator by a washer normalized the current distribution and provided for non-dendritic lithium deposits in coin cells.
引用
收藏
页码:3999 / 4006
页数:8
相关论文
共 48 条
[1]   Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes [J].
Adams, Brian D. ;
Carino, Emily V. ;
Connell, Justin G. ;
Han, Kee Sung ;
Cao, Ruiguo ;
Chen, Junzheng ;
Zheng, Jianming ;
Li, Qiuyan ;
Mueller, Karl T. ;
Henderson, Wesley A. ;
Zhang, Ji-Guang .
NANO ENERGY, 2017, 40 :607-617
[2]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[3]  
[Anonymous], 2014, SCI REP-UK, DOI DOI 10.1038/SREP07134
[4]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[5]   Interactions between Lithium Growths and Nanoporous Ceramic Separators [J].
Bai, Peng ;
Guo, Jinzhao ;
Wang, Miao ;
Kushima, Akihiro ;
Su, Liang ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
JOULE, 2018, 2 (11) :2434-2449
[6]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[7]   Impact of External Pressure and Electrolyte Transport Properties on Lithium Dendrite Growth [J].
Barai, Pallab ;
Higa, Kenneth ;
Srinivasan, Venkat .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (11) :A2654-A2666
[8]   Dendrite-Free Lithium Anode via a Homogenous Li-Ion Distribution Enabled by a Kimwipe Paper [J].
Chang, Chi-Hao ;
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED SUSTAINABLE SYSTEMS, 2017, 1 (1-2)
[9]   Investigating Li Microstructure Formation on Li Anodes for Lithium Batteries by in Situ 6Li/7Li NMR and SEM [J].
Chang, Hee Jung ;
Trease, Nicole M. ;
Ilott, Andrew J. ;
Zeng, Dongli ;
Du, Lin-Shu ;
Jerschow, Alexej ;
Grey, Clare P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (29) :16443-16451
[10]   Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries [J].
Cheng, Xin-Bing ;
Hou, Ting-Zheng ;
Zhang, Rui ;
Peng, Hong-Jie ;
Zhao, Chen-Zi ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED MATERIALS, 2016, 28 (15) :2888-2895