Web-Based Spine Segmentation Using Deep Learning in Computed Tomography Images

被引:37
作者
Kim, Young Jae [1 ,3 ,4 ]
Ganbold, Bilegt [2 ]
Kim, Kwang Gi [1 ,2 ,3 ,4 ]
机构
[1] Gachon Univ, Dept Biomed Engn, Coll Hlth Sci, Incheon, South Korea
[2] Gachon Univ, Gachon Adv Inst Hlth Sci & Technol GAIHST, Dept Hlth Sci & Technol, Incheon, South Korea
[3] Gachon Uinvers, Dept Biomed Engn, Coll Med, Incheon, South Korea
[4] Gachon Univ, Biomed & Convergence Inst, Med Device R&D Ctr, Gil Hosp, Incheon, South Korea
关键词
Deep Learning; Computer-Aided Diagnosis; Health Information Systems; Classification; Spine;
D O I
10.4258/hir.2020.26.1.61
中图分类号
R-058 [];
学科分类号
摘要
Objectives: Back pain, especially lower back pain, is experienced in 60% to 80% of adults at some points during their lives. Various studies have found that lower back pain is a very common problem among adolescents, and the highest incidence rates are for adults in their 30s. There has been a remarkable increase in using computer-aided diagnosis to assist doctors in the interpretation of medical images. Spine segmentation in computed tomography (CT) scans using algorithmic methods allows improved diagnosis of back pain. Methods: In this study, we developed a web-based automatic spine segmentation method using deep learning and obtained the dice coefficient by comparison with the predicted image. Our method is based on convolutional neural networks for segmentation. More specifically, we train a hierarchical data format file using U-Net architecture and then insert the test data label to perform segmentation. Thus, we obtained more specific and detailed results. A total of 344 CT images were used in the experiment. Of these, 330 were used for learning, and the remaining 14 for testing. Results: Our method achieved an average dice coefficient of 90.4%, a precision of 96.81%, and an F1-score of 91.64%. Conclusions: The proposed web-based deep learning approach can be very practical and accurate for spine segmentation as a diagnostic method.
引用
收藏
页码:61 / 67
页数:7
相关论文
共 17 条
[1]   Social-Sensor Cloud Service Selection [J].
Aamir, Tooba ;
Bouguettaya, Athman ;
Dong, Hai ;
Erradi, Abdelkarim ;
Hadjidj, Rachid .
2017 IEEE 24TH INTERNATIONAL CONFERENCE ON WEB SERVICES (ICWS 2017), 2017, :508-515
[2]  
Abu-Naser S.and., 2016, J MULTIDISCIP ENG SC, V2, P441
[3]  
[Anonymous], IMPR DIAGN HLTH CAR
[4]  
[Anonymous], 2011, P EDBT ICDT 2011 WOR
[5]  
[Anonymous], 2006, P 23 INT C MACH LEAR, DOI [DOI 10.1145/1143844.1143874, 10.1145/1143844.1143874]
[6]  
Clinic Mayo, BACK PAIN
[7]  
Collette A., 2013, Python and HDF5: Unlocking Scientific Data
[8]  
Grinberg Miguel, 2018, Flask Web Development: Developing Web Applications with Python
[9]  
Kamboj A, 2012, INT J ADV RES COMPUT, V2, P146
[10]  
Lathen G., 2010, Ph.D. thesis