A Convolution-Free Finite-Element Time-Domain Method for the Nonlinear Dispersive Vector Wave Equation

被引:4
|
作者
Abraham, David S. [1 ]
Giannacopoulos, Dennis D. [1 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 0E9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Dispersive media; finite-element methods; nonlinear media; time-domain analysis;
D O I
10.1109/TMAG.2019.2935681
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, a finite-element time-domain method is presented for the solution of the second-order vector wave equation (VWE) subject to electrically complex materials, including general combinations of linear dispersion, instantaneous nonlinearity, and dispersive nonlinearity. The presented method is novel in that it offers greater geometric flexibility than existing finite-difference methods, incorporates both instantaneous and dispersive nonlinearity, scales to arbitrary dispersive and nonlinear orders, and is simpler, faster, and requires less computational complexity than existing mixed formulations due to the use of edge elements only.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Unconditionally Stable Time-Domain Mixed Finite-Element Method
    Crawford, Zane D.
    Li, Jie
    Christlieb, Andrew
    Shanker, B.
    2017 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2017, : 1789 - 1790
  • [22] Modeling of magnetic loss in the finite-element time-domain method
    Riley, DJ
    Jin, JM
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2005, 46 (02) : 165 - 168
  • [23] An Explicit Time-Domain Finite-Element Method that is Unconditionally Stable
    He, Qing
    Jiao, Dan
    2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, : 2969 - 2972
  • [24] Convolution perfectly matched layer for the Finite-Element Time-Domain method modeling of Ground Penetrating Radar
    Feng De-Shan
    Wang Xun
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2017, 60 (01): : 413 - 423
  • [25] A Nonspurious 3-D Vector Discontinuous Galerkin Finite-Element Time-Domain Method
    Chen, Jiefu
    Liu, Qing Huo
    Chai, Mei
    Mix, Jason A.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2010, 20 (01) : 1 - 3
  • [26] Nonlinear Time-Domain Finite-Element Modeling of Thin Electromagnetic Shells
    Sabariego, Ruth V.
    Geuzaine, Christophe
    Dular, Patrick
    Gyselinck, Johan
    IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (03) : 976 - 979
  • [27] Discontinuous Galerkin Implementation of Domain Decomposition Time-Domain Finite-Element Method
    Ye, Zhenbao
    Wang, Chao-Fu
    2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, : 2338 - 2341
  • [28] A General Time-Domain Finite-Element Method for Frequency-Domain Solutions
    Fu, W. N.
    Zhang, Xiu
    Ho, S. L.
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (04) : 1284 - 1289
  • [29] An efficient finite-element time-domain method for the analysis of the coupling between wave and shielded enclosure
    Benhassine, S
    Pichon, L
    Tabbara, W
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) : 709 - 712
  • [30] A parallel finite-element time-domain method for transient electromagnetic simulation
    Fu, Haohuan
    Wang, Yingqiao
    Um, Evan Schankee
    Fang, Jiarui
    Wei, Tengpeng
    Huang, Xiaomeng
    Yang, Guangwen
    GEOPHYSICS, 2015, 80 (04) : E213 - E224