A Convolution-Free Finite-Element Time-Domain Method for the Nonlinear Dispersive Vector Wave Equation

被引:4
作者
Abraham, David S. [1 ]
Giannacopoulos, Dennis D. [1 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 0E9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Dispersive media; finite-element methods; nonlinear media; time-domain analysis;
D O I
10.1109/TMAG.2019.2935681
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, a finite-element time-domain method is presented for the solution of the second-order vector wave equation (VWE) subject to electrically complex materials, including general combinations of linear dispersion, instantaneous nonlinearity, and dispersive nonlinearity. The presented method is novel in that it offers greater geometric flexibility than existing finite-difference methods, incorporates both instantaneous and dispersive nonlinearity, scales to arbitrary dispersive and nonlinear orders, and is simpler, faster, and requires less computational complexity than existing mixed formulations due to the use of edge elements only.
引用
收藏
页数:4
相关论文
共 50 条
[21]   Time-Domain Finite-Element Method for Near-Field Applications With Magnetic Metamaterials [J].
Gong, Zhi ;
Yang, Shiyou .
IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (06)
[22]   A general approach for the stability analysis of the time-domain finite-element method for electromagnetic simulations [J].
Jiao, D ;
Jin, JM .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2002, 50 (11) :1624-1632
[23]   Time-domain finite-difference and finite-element methods for Maxwell equations in complex media [J].
Teixeira, Fernando L. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (08) :2150-2166
[24]   Piecewise linear recursive convolution finite element time domain method for electromagnetic analysis of dispersive media [J].
Li, Linqian ;
Wei, Bing ;
Yang, Qian ;
Ge, Debiao .
OPTIK, 2019, 198
[25]   Transient Electrothermal Analysis of Multilevel Interconnects in the Presence of ESD Pulses Using the Nonlinear Time-Domain Finite-Element Method [J].
Shi, Yan-Bing ;
Yin, Wen-Yan ;
Mao, Jun-Fa ;
Liu, Peiguo ;
Liu, Qing Huo .
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2009, 51 (03) :774-783
[26]   Modeling of doubly lossy and dispersive media with the time-domain finite-element dual-field domain-decomposition algorithm [J].
Li, Xiaolei ;
Jin, Jian-Ming .
INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2013, 26 (01) :28-40
[27]   A time-domain finite element method for Helmholtz equations [J].
Van, T ;
Wood, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 183 (02) :486-507
[28]   Surface-impedance boundary conditions in dual time-domain finite-element formulations [J].
Sabariego R.V. ;
Dular P. ;
Geuzaine C. ;
Gyselinck J. .
IEEE Transactions on Magnetics, 2010, 46 (08) :3524-3531
[29]   Frequency-dependent envelope finite-element time-domain analysis of dispersion materials [J].
Rodríguez-Esquerre, VF ;
Koshiba, M ;
Hernández-Figueroa, HE .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2005, 44 (01) :13-16
[30]   Modular Discontinuous Galerkin Time-Domain Method for General Dispersive Media With Vector Fitting [J].
Amorim, Tiago V. L. ;
Silva, Elson J. ;
Moreira, Fernando J. S. ;
Teixeira, Fernando L. .
IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2025, 10 :179-186