A Convolution-Free Finite-Element Time-Domain Method for the Nonlinear Dispersive Vector Wave Equation

被引:4
作者
Abraham, David S. [1 ]
Giannacopoulos, Dennis D. [1 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 0E9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Dispersive media; finite-element methods; nonlinear media; time-domain analysis;
D O I
10.1109/TMAG.2019.2935681
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, a finite-element time-domain method is presented for the solution of the second-order vector wave equation (VWE) subject to electrically complex materials, including general combinations of linear dispersion, instantaneous nonlinearity, and dispersive nonlinearity. The presented method is novel in that it offers greater geometric flexibility than existing finite-difference methods, incorporates both instantaneous and dispersive nonlinearity, scales to arbitrary dispersive and nonlinear orders, and is simpler, faster, and requires less computational complexity than existing mixed formulations due to the use of edge elements only.
引用
收藏
页数:4
相关论文
共 50 条
[11]   Time-domain finite-element methods [J].
Lee, JF ;
Lee, R ;
Cangellaris, A .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (03) :430-442
[12]   Shift-operator finite-element time-domain dealing with dispersive media [J].
Li, Linqian ;
Wei, Bing ;
Yang, Qian ;
Ge, Debiao .
OPTIK, 2019, 182 :832-838
[13]   An Explicit Time-Domain Finite-Element Method that is Unconditionally Stable [J].
He, Qing ;
Jiao, Dan .
2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, :2969-2972
[14]   A 3-D Hybrid Maxwells Equations Finite-Difference Time-Domain (ME-FDTD)/Wave Equation Finite-Element Time-Domain (WE-FETD) Method [J].
Wang, Jiaxuan ;
Ren, Qiang .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2023, 71 (06) :5212-5220
[15]   Implementing a finite-element time-domain program in parallel [J].
Malan, DH ;
Metaxas, AC .
IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2000, 42 (01) :105-109
[16]   A Unified Implementation of the Perfectly Matched Layer in the Finite-Element Time-Domain Method [J].
Akbarzadeh-Sharbaf, A. ;
Giannacopoulos, D. D. .
2014 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2014, :719-722
[17]   Orthogonal vector basis functions for time domain finite element solution of the vector wave equation [J].
White, DA .
IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) :1458-1461
[18]   Time-domain finite-element modeling of thin electromagnetic shells [J].
Gyselinck, Johan ;
Sabariego, Ruth V. ;
Dular, Patrick ;
Geuzaine, Christophe .
IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) :742-745
[19]   Treating late-time instability of hybrid finite-element/finite-difference time-domain method [J].
Hwang, CT ;
Wu, RB .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1999, 47 (02) :227-232
[20]   An Explicit Time-Domain Finite-Element Boundary Integral Method for Analysis of Electromagnetic Scattering [J].
Dong, Ming ;
Chen, Liang ;
Jiang, Lijun ;
Li, Ping ;
Bagci, Hakan .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (07) :6089-6094