Finite element approximation for some quasilinear elliptic problems

被引:5
|
作者
Matsuzawa, Y [1 ]
机构
[1] Care Of Suzuki T, Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 560, Japan
关键词
quasilinear elliptic boundary value problem; finite element method;
D O I
10.1016/S0377-0427(98)00085-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the finite element approximation of the boundary value problem - del . (A(u)del u) = f in Omega, u=0 on partial derivative Omega, where Omega is a two- or three-dimensional polyhedral domain and A(u) is a Lipschitz continuous function satisfying A(u) greater than or equal to delta > 0. Under the assumption of the uniqueness of the weak solution, we can show the L-infinity convergence of the approximate solution. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:13 / 25
页数:13
相关论文
共 50 条
  • [31] Quasilinear Poroelasticity: Analysis and Hybrid Finite Element Approximation
    Cao, Yanzhao
    Chen, Song
    Meir, A. J.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (04) : 1174 - 1189
  • [32] On the optimality of some FAC and AFAC methods for elliptic finite element problems
    Cheng, HJ
    TAIWANESE JOURNAL OF MATHEMATICS, 1998, 2 (04): : 405 - 426
  • [33] L infinity -CONVERGENCE OF FINITE ELEMENT APPROXIMATION TO QUASILINEAR INITIAL BOUNDARY VALUE PROBLEMS.
    Dobrowolski, Manfred
    1978, 12 (03): : 247 - 266
  • [34] An existence and comparison theorem for some quasilinear elliptic problems
    Mossino, J
    Moutoussamy, I
    Simon, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (12): : 1123 - 1128
  • [35] An adaptive edge element approximation of a quasilinear H(curl)-elliptic problem
    Xu, Yifeng
    Yousept, Irwin
    Zou, Jun
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2020, 30 (14): : 2799 - 2826
  • [36] A Priori Error Analysis for the Finite Element Approximation of Elliptic Dirichlet Boundary Control Problems
    May, S.
    Rannacher, R.
    Vexler, B.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 637 - +
  • [37] Finite element approximation of multi-scale elliptic problems using patches of elements
    Glowinski, R
    He, JW
    Lozinski, A
    Rappaz, J
    Wagner, J
    NUMERISCHE MATHEMATIK, 2005, 101 (04) : 663 - 687
  • [38] Finite element approximation of multi-scale elliptic problems using patches of elements
    Roland Glowinski
    Jiwen He
    Alexei Lozinski
    Jacques Rappaz
    Joël Wagner
    Numerische Mathematik, 2005, 101 : 663 - 687
  • [40] A POSTERIORI ERROR ESTIMATES OF FINITE VOLUME ELEMENT METHOD FOR SECOND-ORDER QUASILINEAR ELLIPTIC PROBLEMS
    Bi, Chunjia
    Wang, Cheng
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (01) : 22 - 40