Finite element approximation for some quasilinear elliptic problems
被引:5
|
作者:
Matsuzawa, Y
论文数: 0引用数: 0
h-index: 0
机构:
Care Of Suzuki T, Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 560, JapanCare Of Suzuki T, Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 560, Japan
Matsuzawa, Y
[1
]
机构:
[1] Care Of Suzuki T, Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 560, Japan
quasilinear elliptic boundary value problem;
finite element method;
D O I:
10.1016/S0377-0427(98)00085-5
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider the finite element approximation of the boundary value problem - del . (A(u)del u) = f in Omega, u=0 on partial derivative Omega, where Omega is a two- or three-dimensional polyhedral domain and A(u) is a Lipschitz continuous function satisfying A(u) greater than or equal to delta > 0. Under the assumption of the uniqueness of the weak solution, we can show the L-infinity convergence of the approximate solution. (C) 1998 Elsevier Science B.V. All rights reserved.