Finite element approximation for some quasilinear elliptic problems

被引:5
|
作者
Matsuzawa, Y [1 ]
机构
[1] Care Of Suzuki T, Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 560, Japan
关键词
quasilinear elliptic boundary value problem; finite element method;
D O I
10.1016/S0377-0427(98)00085-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the finite element approximation of the boundary value problem - del . (A(u)del u) = f in Omega, u=0 on partial derivative Omega, where Omega is a two- or three-dimensional polyhedral domain and A(u) is a Lipschitz continuous function satisfying A(u) greater than or equal to delta > 0. Under the assumption of the uniqueness of the weak solution, we can show the L-infinity convergence of the approximate solution. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:13 / 25
页数:13
相关论文
共 50 条
  • [11] ANALYSIS OF THE FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR QUASILINEAR ELLIPTIC HOMOGENIZATION PROBLEMS
    Abdulle, Assyr
    Vilmart, Gilles
    MATHEMATICS OF COMPUTATION, 2014, 83 (286) : 513 - 536
  • [12] Virtual element method for quasilinear elliptic problems
    Cangiani, A.
    Chatzipantelidis, P.
    Diwan, G.
    Georgoulis, E. H.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (04) : 2450 - 2472
  • [13] Adaptive finite element approximation for distributed elliptic optimal control problems
    Li, R
    Liu, WB
    Ma, HP
    Tang, T
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (05) : 1321 - 1349
  • [14] Finite element approximation of elliptic homogenization problems in nondivergence-form
    Capdeboscq, Yves
    Sprekeler, Timo
    Suli, Endre
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (04): : 1221 - 1257
  • [15] Finite element approximation of fractional order elliptic boundary value problems
    Szekeres, Bela J.
    Izsak, Ferenc
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 292 : 553 - 561
  • [16] FINITE-ELEMENT APPROXIMATION OF NONLINEAR ELLIPTIC PROBLEMS WITH DISCONTINUOUS COEFFICIENTS
    FEISTAUER, M
    SOBOTIKOVA, V
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1990, 24 (04): : 457 - 500
  • [17] Finite-volume-element method for second-order quasilinear elliptic problems
    Bi, Chunjia
    Ginting, Victor
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (03) : 1062 - 1089
  • [18] Expanded mixed finite element methods for quasilinear second order elliptic problems, II
    Chen, ZX
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (04): : 501 - 520
  • [19] EXISTENCE OF MINIMIZERS FOR SOME QUASILINEAR ELLIPTIC PROBLEMS
    Candela, Anna Maria
    Salvatore, Addolorata
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (12): : 3335 - 3345
  • [20] MULTIPLICITY RESULTS FOR SOME QUASILINEAR ELLIPTIC PROBLEMS
    de Paiva, Francisco Odair
    do O, Joao Marcos
    de Medeiros, Everaldo Souto
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2009, 34 (01) : 77 - 89