Finite element approximation for some quasilinear elliptic problems

被引:5
|
作者
Matsuzawa, Y [1 ]
机构
[1] Care Of Suzuki T, Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 560, Japan
关键词
quasilinear elliptic boundary value problem; finite element method;
D O I
10.1016/S0377-0427(98)00085-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the finite element approximation of the boundary value problem - del . (A(u)del u) = f in Omega, u=0 on partial derivative Omega, where Omega is a two- or three-dimensional polyhedral domain and A(u) is a Lipschitz continuous function satisfying A(u) greater than or equal to delta > 0. Under the assumption of the uniqueness of the weak solution, we can show the L-infinity convergence of the approximate solution. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:13 / 25
页数:13
相关论文
共 50 条
  • [1] Finite element approximation of some degenerate monotone quasilinear elliptic systems
    Liu, WB
    Barrett, JW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) : 88 - 106
  • [2] Mimetic finite difference approximation of quasilinear elliptic problems
    Paola F. Antonietti
    Nadia Bigoni
    Marco Verani
    Calcolo, 2015, 52 : 45 - 67
  • [3] Mimetic finite difference approximation of quasilinear elliptic problems
    Antonietti, Paola F.
    Bigoni, Nadia
    Verani, Marco
    CALCOLO, 2015, 52 (01) : 45 - 67
  • [4] Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems I:: the scalar case
    Houston, P
    Robson, J
    Süli, E
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (04) : 726 - 749
  • [5] SOME ERROR ESTIMATES OF FINITE VOLUME ELEMENT APPROXIMATION FOR ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Luo, Xianbing
    Chen, Yanping
    Huang, Yunqing
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (03) : 697 - 711
  • [6] Weak Galerkin finite element method for a class of quasilinear elliptic problems
    Sun, Shi
    Huang, Ziping
    Wang, Cheng
    APPLIED MATHEMATICS LETTERS, 2018, 79 : 67 - 72
  • [7] Finite element approximation of elliptic dirichlet optimal control problems
    Vexler, B.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (7-8) : 957 - 973
  • [8] Finite element approximation of elliptic control problems with constraints on the gradient
    Klaus Deckelnick
    Andreas Günther
    Michael Hinze
    Numerische Mathematik, 2009, 111 : 335 - 350
  • [9] Finite element approximation of elliptic control problems with constraints on the gradient
    Deckelnick, Klaus
    Gunther, Andreas
    Hinze, Michael
    NUMERISCHE MATHEMATIK, 2009, 111 (03) : 335 - 350
  • [10] A modified weak Galerkin finite element method for nonmonotone quasilinear elliptic problems
    Guo, Liming
    Sheng, Qiwei
    Wang, Cheng
    Huang, Ziping
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 406