Simulation of Intermetallic Solidification Using Phase-Field Techniques

被引:0
|
作者
Mullis, A. M. [1 ]
Bollada, P. C. [1 ]
Jimack, P. K. [2 ]
机构
[1] Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Intermetallic compounds; Solute trapping; Faceted crystals; Thermodynamics; CAHN-HILLIARD MODEL; RAPID SOLIDIFICATION; GROWTH; INTERFACES;
D O I
10.1007/s12666-018-1428-3
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
We have presented current ideas towards developing a phase-field model appropriate to the solidification of intermetallic phases. Such simulation presents two main challenges (1) dealing with faceted interfaces and (2) the complex sublattice models used to describe the thermodynamics of such phases. Although models already exist for the simulation of faceted crystals, some of these can be shown to produce highly unrealistic Wulff shapes. The model present here uses a parameterisation of the Wulff shape as a direct input to the model, allowing the simulation of arbitrary crystal shapes. In addition, an anti-trapping current that can be used with arbitrary (including sublattice) thermodynamics is presented. Such anti-trapping currents are vital in the simulation of intermetallic phases where the steep liquidus slope means small deviations in solute partitioning behaviour leading to a significant change in tip undercooling.
引用
收藏
页码:2617 / 2622
页数:6
相关论文
共 50 条
  • [1] Simulation of Intermetallic Solidification Using Phase-Field Techniques
    A. M. Mullis
    P. C. Bollada
    P. K. Jimack
    Transactions of the Indian Institute of Metals, 2018, 71 : 2617 - 2622
  • [2] On the phase-field modeling of rapid solidification
    Gu, Yijia
    He, Xiaoming
    Han, Daozhi
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 199 (199)
  • [3] Trapping of Impurity in a Dilute Solution: Phase-Field Simulation of Solidification
    Novokreshchenova, A. A.
    Lebedev, V. G.
    Galenko, P. K.
    TECHNICAL PHYSICS, 2021, 66 (06) : 768 - 778
  • [4] Phase-field simulation of dendritic solidification using a full threaded tree with adaptive meshing
    Yin Yajun
    Zhou Jianxin
    Liao Dunming
    Pang Shengyong
    Shen Xu
    China Foundry, 2014, 11 (06) : 493 - 497
  • [5] Phase-field modeling of an abrupt disappearance of solute drag in rapid solidification
    Wang, Haifeng
    Galenko, P. K.
    Zhang, Xiao
    Kuang, Wangwang
    Liu, Feng
    Herlach, D. M.
    ACTA MATERIALIA, 2015, 90 : 282 - 291
  • [6] Phase-field simulation of micropores constrained by the dendritic network during solidification
    Meidani, H.
    Jacot, A.
    ACTA MATERIALIA, 2011, 59 (08) : 3032 - 3040
  • [7] Why Solidification? Why Phase-Field?
    Steinbach, Ingo
    JOM, 2013, 65 (09) : 1096 - 1102
  • [8] Phase-field modeling of rapid solidification
    Kim, SG
    Kim, WT
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 304 (1-2): : 281 - 286
  • [9] Phase-Field Modelling of Solidification Microstructures
    Plapp, Mathis
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2016, 96 (03) : 179 - 198
  • [10] Phase-field simulation of solidification and solid-state transformations in multicomponent steels
    Boettger, Bernd
    Apel, Markus
    Eiken, Janin
    Schaffnit, Philippe
    Steinbach, Ingo
    STEEL RESEARCH INTERNATIONAL, 2008, 79 (08) : 608 - 616