Long-Range Electrostatic Colloidal Interactions and Specific Ion Effects in Deep Eutectic Solvents

被引:43
|
作者
Sanchez-Fernandez, Adrian [6 ]
Jackson, Andrew J. [1 ,2 ]
Prevost, Sylvain F. [3 ]
Doutch, James J. [4 ]
Edler, Karen J. [5 ]
机构
[1] European Spallat Source, S-22100 Lund, Sweden
[2] Lund Univ, Dept Phys Chem, SE-22100 Lund, Sweden
[3] Inst Laue Langevin, F-38000 Grenoble, France
[4] Sci & Technol Facil Council, ISIS Neutron & Muon Source, Didcot OX11 0QX, Oxon, England
[5] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[6] Lund Univ, Food Technol Engn & Nutr, S-22100 Lund, Sweden
基金
欧盟地平线“2020”;
关键词
ANGLE NEUTRON-SCATTERING; MICELLE STRUCTURE; WATER; SURFACTANTS; INTERFACE; SIZE; MICELLIZATION; NANOSTRUCTURE; COUNTERIONS; DISPERSIONS;
D O I
10.1021/jacs.1c04781
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
While the traditional consensus dictates that high ion concentrations lead to negligible long-range electrostatic interactions, we demonstrate that electrostatic correlations prevail in deep eutectic solvents where intrinsic ion concentrations often surpass 2.5 M. Here we present an investigation of intermicellar interactions in 1:2 choline chloride:glycerol and 1:2 choline bromide:glycerol using small-angle neutron scattering. Our results show that long-range electrostatic repulsions between charged colloidal particles occur in these solvents. Interestingly, micelle morphology and electrostatic interactions are modulated by specific counterion condensation at the micelle interface despite the exceedingly high concentration of the native halide from the solvent. This modulation follows the trends described by the Hofmeister series for specific ion effects. The results are rationalized in terms of predominant ion-ion correlations, which explain the reduction in the effective ionic strength of the continuum and the observed specific ion effects.
引用
收藏
页码:14158 / 14168
页数:11
相关论文
共 50 条
  • [1] A deep potential model with long-range electrostatic interactions
    Zhang, Linfeng
    Wang, Han
    Muniz, Maria Carolina
    Panagiotopoulos, Athanassios Z.
    Car, Roberto
    E, Weinan
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (12):
  • [2] Correlation between specific ion adsorption at the air/water interface and long-range interactions in colloidal systems
    Schelero, Natascha
    von Klitzing, Regine
    SOFT MATTER, 2011, 7 (06) : 2936 - 2942
  • [3] MODELING OF LONG-RANGE ELECTROSTATIC INTERACTIONS IN DNA
    VOLOGODSKII, A
    COZZARELLI, N
    BIOPOLYMERS, 1995, 35 (03) : 289 - 296
  • [4] On the truncation of long-range electrostatic interactions in DNA
    Norberg, J
    Nilsson, L
    BIOPHYSICAL JOURNAL, 2000, 79 (03) : 1537 - 1553
  • [5] Rheological behavior of colloidal suspension with long-range interactions
    Arietaleaniz, S.
    Malgaretti, P.
    Pagonabarraga, I.
    Hidalgo, R. C.
    PHYSICAL REVIEW E, 2018, 98 (04)
  • [6] On the electrostatic interactions involving long-range Rydberg molecules
    Rivera-Rodriguez, H.
    Jauregui, R.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2021, 54 (17)
  • [7] On the treatment of long-range electrostatic interactions in biomolecular simulations
    Yonetani, Yoshiteru
    Frontiers of Computational Science, 2007, : 209 - 214
  • [8] Long-range electrostatic effects in biomolecular simulations
    Darden, TA
    Toukmaji, A
    Pedersen, LG
    JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1997, 94 (7-8) : 1346 - 1364
  • [9] Long-range electrostatic effects on peptide folding
    Åqvist, J
    FEBS LETTERS, 1999, 457 (03) : 414 - 418
  • [10] LONG-RANGE ELECTROSTATIC EFFECTS IN PEPSIN CATALYSIS
    KUZMIC, P
    SUN, CQ
    ZHAO, ZC
    RICH, DH
    TETRAHEDRON, 1991, 47 (14-15) : 2519 - 2534