Designed synthesis of Fe3O4@NC yolk-shell hollow spheres as high performance anode material for lithium-ion batteries

被引:17
|
作者
Pan, Qichang [1 ,2 ]
Ding, Yajun [1 ,2 ]
Yan, Zhixiong [1 ,2 ]
Cai, Yezheng [1 ,2 ]
Zheng, Fenghua [1 ,2 ]
Huang, Youguo [1 ,2 ]
Wang, Hongqiang [1 ,2 ]
Li, Qingyu [1 ,2 ]
机构
[1] Guangxi Normal Univ, Sch Chem & Pharmaceut Sci, Guilin 541004, Peoples R China
[2] Guangxi Normal Univ, Guangxi Key Lab Low Carbon Energy Mat, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Fe3O4; Hollow spheres; Yolk-shell structure; Anode materials; Lithium ion batteries; HIGH-CAPACITY; FE3O4; NANOPARTICLES; ASSISTED SYNTHESIS; REVERSIBLE ANODE; LONG-LIFE; CARBON; NANOSHEETS; GRAPHENE; MICROSPHERES; COMPOSITE;
D O I
10.1016/j.jallcom.2019.153569
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe3O4 is considered as attractive promising anode material for LIBs due to its high lithium storage capacity, abundance, low cost and eco-friendly features. However, the tremendous volume expansion during the lithiation process induce pulverization of Fe3O4, lead to rapid capacity loss and poor cycling stability, which seriously hinder the practical application in LIBs. Here, unique Fe3O4@NC yolk-shell hollow spheres are designed and application in LIBs. This unique structure combines the advantage of hollow and yolk-shelled structures, which can effectively avoid the volume expansion of Fe3O4 during the lithiation process, and shorten the Li+/electron diffusion pathways. Therefore, the Fe3O4@NC HSs deliver superior cycling and rate performance when evaluated as anode material for LIBs. High reversible capacity of 755.8 mAh g(-1) is achieved at 2.0 A g(-1) over 500 cycles when application in half cell. Moreover, the Fe3O4@NC HSs vertical bar vertical bar LiFePO4@C full cell exhibit high capacity (456.1 mAh g(-1) is retained at 0.2 A g(-1) over 50 cycles), outstanding rate capability (325 mAh g(-1) is achieved even at 2.0 A g(-1)) and long-term cycling performance (251.1 mAh g(-1) is maintained after 1000 cycles at 1.0 A g(-1)). (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Fabrication of core-shell, yolk-shell and hollow Fe3O4@ carbon microboxes for high-performance lithium-ion batteries
    Tian, Hao
    Liu, Hao
    Yang, Tianyu
    Veder, Jean-Pierre
    Wang, Guoxiu
    Hu, Ming
    Wang, Shaobin
    Jaroniec, Mietek
    Liu, Jian
    MATERIALS CHEMISTRY FRONTIERS, 2017, 1 (05) : 823 - 830
  • [2] Facile synthesis of yolk-shell CoS2@FeS2@NC hollow microspheres for advanced lithium-ion batteries anode materials
    Liu, Dongxuan
    Min, Weixing
    Chen, Ping
    Xu, Dongwei
    Cao, Xinrong
    Chen, Guanzhen
    Wang, Ruiqi
    IONICS, 2022, 28 (11) : 4967 - 4976
  • [3] Phase-pure β-NiMoO4 yolk-shell spheres for high-performance anode materials in lithium-ion batteries
    Ahn, Jee Hyun
    Park, Gi Dae
    Kang, Yun Chan
    Lee, Jong-Heun
    ELECTROCHIMICA ACTA, 2015, 174 : 102 - 110
  • [4] Facile synthesis of monodispersed α-Fe2O3 cubes as a high-performance anode material for lithium-ion batteries
    Jin, Xiuying
    Li, Yanwei
    Jiang, Jiqiong
    Xiao, Shunhua
    Yang, Jianwen
    Yao, Jinhun
    IONICS, 2021, 27 (08) : 3291 - 3299
  • [5] Solvothermal Synthesis of Yolk-Shell CeVO4/C Microspheres as a High-Performance Anode for Lithium-Ion Batteries
    Jin, Rencheng
    Liu, Chunping
    Sun, Lin
    Zhang, Zhenjiang
    Chen, Gang
    CHEMELECTROCHEM, 2016, 3 (04): : 644 - 649
  • [6] Unique porous yolk-shell structured Co3O4 anode for high performance lithium ion batteries
    Liang, Hongmei
    Wang, Zhixing
    Guo, Huajun
    Li, Xinhai
    CERAMICS INTERNATIONAL, 2017, 43 (14) : 11058 - 11064
  • [7] Facile synthesis of yolk-shell CoS2@FeS2@NC hollow microspheres for advanced lithium-ion batteries anode materials
    Dongxuan Liu
    Weixing Min
    Ping Chen
    Dongwei Xu
    Xinrong Cao
    Guanzhen Chen
    Ruiqi Wang
    Ionics, 2022, 28 : 4967 - 4976
  • [8] Facile Fabrication of Fe3O4@TiO2@C Yolk-Shell Spheres as Anode Material for Lithium Ion Batteries
    Liao, Wenming
    Shan, Zhongqiang
    Tian, Jianhua
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2020, 26 (01) : 3 - 12
  • [9] The yolk-shell FeSe@C nanobox with novel synthesis and its high performance for the anode of lithium-ion batteries
    Zhong, Du
    Chen, Jinwei
    Zhang, Jie
    Luo, Yan
    Li, Zhenjie
    Cheng, Li
    Chen, Yihan
    Wang, Gang
    Wang, Ruilin
    MATERIALS RESEARCH EXPRESS, 2019, 6 (08)
  • [10] Hollow spheres of MgFe2O4 as anode material for lithium-ion batteries
    Yin, Yanhong
    Huo, Ningning
    Liu, Wenfeng
    Shi, Zhenpu
    Wang, Qiuxian
    Ding, Yanmin
    Zhang, Jun
    Yang, Shuting
    SCRIPTA MATERIALIA, 2016, 110 : 92 - 95