Large-scale coronal heating by the small-scale magnetic field of the Sun

被引:156
作者
Schrijver, CJ
Title, AM
Harvey, KL
Sheeley, NR
Wang, YM
van den Oord, GHJ
Shine, RA
Tarbell, TD
Hurlburt, NE
机构
[1] Stanford Lockheed Inst Solar & Astrophys H1 12 25, Palo Alto, CA 94034 USA
[2] Solar Phys Res Corp, Tucson, AZ 85718 USA
[3] USN, Res Lab, EO Hulburt Ctr Space Res, Washington, DC 20375 USA
[4] Univ Utrecht, Astron Inst, NL-3508 TA Utrecht, Netherlands
关键词
D O I
10.1038/28108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic fields play a crucial role in heating the outer atmospheres of the Sun and Sun-like stars, but the mechanisms by which magnetic energy in the photosphere is converted to thermal energy in the corona remain unclear. Observations show that magnetic fields emerge onto the solar surface as bipolar regions with a broad range of length scales. On large scales, the bipolar regions survive for months before dispersing: diffusively(1-3). On the smaller scales, individual bipolar regions disappear within days but are continuously replenished by new small flux concentrations, resulting in a sustained state of mixed polarity(4). Here we determine the rate of emergence of these small bipolar regions and we argue that the frequent magnetic reconnections associated with these regions (an unavoidable consequence of continued flux replacement) will heat the solar atmosphere. The model that describes the details of these mixed-polarity regions(4) is complementary to the traditional diffusion model for large-scale flux dispersal(1-3), and a combination of the two should lead to a more complete understanding of the role of magnetic fields in stellar atmospheres.
引用
收藏
页码:152 / 154
页数:3
相关论文
共 17 条
[1]   NUMERICAL SIMULATIONS OF LARGE-SCALE SOLAR MAGNETIC-FIELDS [J].
DEVORE, CR ;
SHEELEY, NR ;
BORIS, JP ;
YOUNG, TR ;
HARVEY, KL .
AUSTRALIAN JOURNAL OF PHYSICS, 1985, 38 (06) :999-1007
[2]   Heating and activity of the solar corona .1. Boundary shearing of an initially homogeneous magnetic field [J].
Galsgaard, K ;
Nordlund, A .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1996, 101 (A6) :13445-13460
[3]  
HAGENAAR HJ, UNPUB ASTROPHYS J
[4]  
HARVEY KL, 1985, AUST J PHYS, V38, P875
[5]   TRANSPORT OF MAGNETIC FIELDS ON SUN [J].
LEIGHTON, RB .
ASTROPHYSICAL JOURNAL, 1964, 140 (04) :1547-&
[6]  
Martin S.F., 1990, IAU Symp, V138, P129
[7]  
Parker E. N., 1994, Spontaneous Current Sheets in Magnetic Fields with Application to Stellar X-Rays
[8]   The solar oscillations investigation - Michelson Doppler Imager [J].
Scherrer, PH ;
Bogart, RS ;
Bush, RI ;
Hoeksema, JT ;
Kosovichev, AG ;
Schou, J ;
Rosenberg, W ;
Springer, L ;
Tarbell, TD ;
Title, A ;
Wolfson, CJ ;
Zayer, I ;
Akin, D ;
Carvalho, B ;
Chevalier, R ;
Duncan, D ;
Edwards, C ;
Katz, N ;
Levay, M ;
Lindgren, R ;
Mathur, D ;
Morrison, S ;
Pope, T ;
Rehse, R ;
Torgerson, D .
SOLAR PHYSICS, 1995, 162 (1-2) :129-188
[9]   RELATIONS BETWEEN THE PHOTOSPHERIC MAGNETIC-FIELD AND THE EMISSION FROM THE OUTER ATMOSPHERES OF COOL STARS .1. THE SOLAR CA-II K-LINE CORE EMISSION [J].
SCHRIJVER, CJ ;
COTE, J ;
ZWAAN, C ;
SAAR, SH .
ASTROPHYSICAL JOURNAL, 1989, 337 (02) :964-976
[10]   Dynamics of the chromospheric network: Mobility, dispersal, and diffusion coefficients [J].
Schrijver, CJ ;
Shine, RA ;
Hagenaar, HJ ;
Hurlburt, NE ;
Title, AM ;
Strous, LH ;
Harvey, JW ;
Duvall, TL .
ASTROPHYSICAL JOURNAL, 1996, 468 (02) :921-932