On lacunary wavelet series

被引:62
作者
Jaffard, S [1 ]
机构
[1] Univ Paris 12, Fac Sci & Technol, Dept Math, F-94010 Creteil, France
关键词
wavelet bases; Hausdorff dimensions; chirps; Holder regularity; modulus of continuity;
D O I
10.1214/aoap/1019737675
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the Holder singularities of random lacunary wavelet series are chirps located on random fractal sets. We determine the Hausdorff dimensions of these singularities, and the a.e. modulus of continuity of the series. Lacunary wavelet series thus turn out to be a new example of multifractal functions.
引用
收藏
页码:313 / 329
页数:17
相关论文
共 18 条
[1]  
ARENEDO A, 1995, PHYS A, V213, P232
[2]  
Benassi A, 1997, REV MAT IBEROAM, V13, P19
[3]   COMPRESSION OF WAVELET DECOMPOSITIONS [J].
DEVORE, RA ;
JAWERTH, B ;
POPOV, V .
AMERICAN JOURNAL OF MATHEMATICS, 1992, 114 (04) :737-785
[4]   HIGH-ORDER REGULARITY FOR CONSERVATION-LAWS [J].
DEVORE, RA ;
LUCIER, BJ .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (02) :413-430
[5]  
DEVORE RA, 1992, P IEEE MIL COMM C
[6]   DE-NOISING BY SOFT-THRESHOLDING [J].
DONOHO, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) :613-627
[7]  
DONOHO DL, 1995, J ROY STAT SOC B MET, V57, P301
[8]  
FALCONER I, 1990, FRACTAL GEOMETRY
[9]  
FRISCH U, 1985, P INT SUMM SCH PHYS, P84
[10]   Two results concerning chirps and 2-microlocal exponents prescription [J].
Guiheneuf, B ;
Jaffard, S ;
Vehel, JL .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1998, 5 (04) :487-492