Runoff Responses to Climate and Land Use/Cover Changes under Future Scenarios

被引:51
|
作者
Pan, Sihui [1 ]
Liu, Dedi [1 ]
Wang, Zhaoli [2 ]
Zhao, Qin [1 ]
Zou, Hui [1 ]
Hou, Yukun [1 ]
Liu, Pan [1 ]
Xiong, Lihua [1 ]
机构
[1] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Hubei, Peoples R China
[2] South China Univ Technol, State Key Lab Subtrop Bldg Sci, Guangzhou 510630, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
climate change; LUC change; CA-Markov model; runoff responses; SWAT model; MARA RIVER-BASIN; WATER-RESOURCES; BIAS CORRECTION; CHANGE IMPACTS; HYDROLOGICAL RESPONSE; MODEL; CATCHMENT; STREAMFLOW; YIELD; DISCHARGE;
D O I
10.3390/w9070475
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Climate and land use/cover (LUC) are the two most significant factors that directly affect the runoff process. However, most research on runoff response has focused mainly on projected climate variation, while future LUC variability has been neglected. Therefore, the objective of this study is to examine the impacts of projected climate and LUC changes on runoff. Future climate scenarios are projected using the Quantile Mapping (QM) method, and future LUC scenarios are predicted with the Cellular Automaton-Markov (CA-Markov) model. Three different scenarios are simulated and compared to evaluate their impacts: Scenario 1 (LUC of 2010 and climate during the 2011-2050 period, abbreviated S1), Scenario 2 (LUC of 2010, 2020, 2030, 2040 and 2050 and climate of the historical wet year, normal year and dry year, abbreviated S2) and Scenario 3 (LUC of 2010, 2020, 2030, 2040 and 2050 and corresponding climate projections of 2011-2020, 2021-2030, 2031-2040 and 2041-2050 period, abbreviated S3). These three scenarios are then input into the Soil and Water Assessment Tool (SWAT) model to assess runoff responses. Beijiang River Basin, located in southern China, is used in this case study. The results obtained from S1, S2 and S3 show that runoff change in this basin is mainly caused by climate change; warmer temperatures and greater precipitation increase runoff. LUC change has little influence on runoff at the whole-basin scale, but changes in runoff components are more notable in the urban area than in the natural region at the sub-watershed level. The impact of LUC change in urbanized region on runoff components differ obviously among the wet, normal and dry years, and surface runoff and groundwater are found to be more sensitive to urbanization. Runoff depth is predicted to increase in this basin under the impacts of both climate and LUC changes in the future. Climate change brings greater increase in water yield and surface runoff, whereas LUC change leads to changes in allocation between surface runoff and groundwater in the urban region.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Investigating the impact of climate and land-use land cover changes on hydrological predictions over the Krishna river basin under present and future scenarios
    Tirupathi, Chanapathi
    Shashidhar, Thatikonda
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 721 (721)
  • [2] Predicting runoff and sediment responses to climate-resilient land use and management scenarios
    Berihun, Mulatu Liyew
    Tsunekawa, Atsushi
    Haregeweyn, Nigussie
    Tsubo, Mitsuru
    Fenta, Ayele Almaw
    Ebabu, Kindiye
    Bayabil, Haimanote Kebede
    Dile, Yihun Taddele
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (28) : 72262 - 72283
  • [3] Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea
    Kim, Jinsoo
    Choi, Jisun
    Choi, Chuluong
    Park, Soyoung
    SCIENCE OF THE TOTAL ENVIRONMENT, 2013, 452 : 181 - 195
  • [4] Effects of future climate and land use changes on runoff in tropical regions of China
    Xue, Shiyu
    Guo, Xiaohui
    He, Yanhu
    Cai, Hao
    Li, Jun
    Zhu, Lirong
    Ye, Changqing
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [5] Effect of land use/cover changes on runoff in the Min River watershed
    Ma, Kai
    Huang, Xiaorong
    Liang, Chuan
    Zhao, Hongbin
    Zhou, Xingyu
    Wei, Xiaoyue
    RIVER RESEARCH AND APPLICATIONS, 2020, 36 (05) : 749 - 759
  • [6] Impacts of climate and land use/cover changes on runoff in the Hanjiang River basin
    Tian J.
    Guo S.
    Liu D.
    Chen Q.
    Wang Q.
    Yin J.
    Wu X.
    He S.
    Dili Xuebao/Acta Geographica Sinica, 2020, 75 (11): : 2307 - 2318
  • [7] Modeling Land-Use and Land-Cover Change and Hydrological Responses under Consistent Climate Change Scenarios in the Heihe River Basin, China
    Zhang, Ling
    Nan, Zhuotong
    Yu, Wenjun
    Ge, Yingchun
    WATER RESOURCES MANAGEMENT, 2015, 29 (13) : 4701 - 4717
  • [8] Assessing the impacts of land cover and climate on runoff and sediment yield of a river basin
    Sinha, Rakesh Kumar
    Eldho, T. I.
    Subimal, Ghosh
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2020, 65 (12): : 2097 - 2115
  • [9] The impact of future climate and land use changes on runoff in the Min-Tuo River Basin
    Jiang, Nan
    Ni, Quan
    Deng, Yu
    Wu, Mingyan
    Yue, Ziying
    Zhu, Mengyu
    Ren, Huaizhun
    Wang, Yuxuan
    JOURNAL OF WATER AND CLIMATE CHANGE, 2024, 15 (11) : 5518 - 5539
  • [10] Identifying the runoff variation in the Naryn River Basin under multiple climate and land-use change scenarios
    Wu, J. S.
    Li, Y. P.
    Sun, J.
    Gao, P. P.
    Huang, G. H.
    Liu, J.
    JOURNAL OF WATER AND CLIMATE CHANGE, 2022, 13 (02) : 574 - 592