Universality of the local spacing distribution in certain ensembles of hermitian Wigner matrices

被引:151
作者
Johansson, K [1 ]
机构
[1] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
D O I
10.1007/s002200000328
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Consider an N x N hermitian random matrix with independent entries, not necessarily Gaussian, a so-called Wigner matrix. It has been conjectured that the local spacing distribution, i.e. the distribution of the distance between nearest neighbour eigenvalues in some part of the spectrum is, in the limit as N --> infinity, the same as that of hermitian random matrices from GUE. We prove this conjecture for a certain subclass of hermitian Wigner matrices.
引用
收藏
页码:683 / 705
页数:23
相关论文
共 32 条
[1]  
Andreief C., 1886, Mem. Soc. Sci., V2, P1
[2]  
[Anonymous], MATHCO0006097
[3]  
Bai ZD, 1999, STAT SINICA, V9, P611
[4]   Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model [J].
Bleher, P ;
Its, A .
ANNALS OF MATHEMATICS, 1999, 150 (01) :185-266
[5]   Biorthogonal ensembles [J].
Borodin, A .
NUCLEAR PHYSICS B, 1998, 536 (03) :704-732
[6]   Correlations of nearby levels induced by a random potential [J].
Brezin, E ;
Hikami, S .
NUCLEAR PHYSICS B, 1996, 479 (03) :697-706
[7]   Spectral form factor in a random matrix theory [J].
Brezin, E ;
Hikami, S .
PHYSICAL REVIEW E, 1997, 55 (04) :4067-4083
[8]  
BREZIN E, CONDMAT9702213
[9]  
Deift P, 1999, COMMUN PUR APPL MATH, V52, P1335, DOI 10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO
[10]  
2-1