Metal Carbonyl Vapor Generation Coupled with Dielectric Barrier Discharge To Avoid Plasma Quench for Optical Emission Spectrometry

被引:44
作者
Cai, Yi [1 ]
Li, Shao-Hua [3 ]
Dou, Shuai [1 ]
Yu, Yong-Liang [1 ,2 ]
Wang, Jian-Hua [1 ,4 ]
机构
[1] Northeastern Univ, Coll Sci, Res Ctr Analyt Sci, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Coll Sci, Dept Chem, Shenyang 110819, Peoples R China
[3] Hebei First Environm Protect Technol Co LTD, Shijiazhuang 050035, Peoples R China
[4] Collaborat Innovat Ctr Chem Sci & Engn, Tianjin 300071, Peoples R China
关键词
ATOMIC FLUORESCENCE SPECTROMETRY; ON-A-CHIP; ABSORPTION-SPECTROMETRY; SAMPLE INTRODUCTION; ELEMENTAL ANALYSIS; LOW-TEMPERATURE; GC DETECTOR; MICROPLASMA; NICKEL; EXCITATION;
D O I
10.1021/ac5042457
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The scope of dielectric barrier discharge (DBD) microplasma as a radiation source for optical emission spectrometry (OES) is extended by nickel carbonyl vapor generation. We proved that metal carbonyl completely avoids the extinguishing of plasma, and it is much more suitable for matching the DBD excitation and OES detection with respect to significant DBD quenching by concomitant hydrogen when hydride generation is used. A concentric quartz UV reactor allows sample solution to flow through the central channel wherein to efficiently receive the uniformly distributed UV irradiation in the confined cylindrical space between the concentric tubes, which facilitates effective carbonyl generation in a nickel solution. The carbonyl is transferred into the DBD excitation chamber by an argon stream for nickel excitation, and the characteristic emission of nickel at 232.0 nm is detected by a charge-coupled device (CCD) spectrometer. A 1.0 mL sample solution results in a linear range of 5100 mu g L-1 along with a detection limit of 1.3 mu g L-1 and a precision of 2.4% RSD at 50 mu g L-1. The present DBD-OES system is validated by nickel in certified reference materials.
引用
收藏
页码:1366 / 1372
页数:7
相关论文
共 42 条
  • [1] 2013 Atomic spectrometry update-A review of advances in environmental analysis
    Butler, Owen T.
    Cairns, Warren R. L.
    Cook, Jennifer M.
    Davidson, Christine M.
    [J]. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2014, 29 (01) : 17 - 50
  • [2] Determination of organic compounds by gas chromatography using a new capacitively coupled microplasma detector
    Guchardi, R
    Hauser, PC
    [J]. ANALYST, 2004, 129 (04) : 347 - 351
  • [3] Vapor generation by UV irradiation for sample introduction with atomic spectrometry
    Guo, XM
    Sturgeon, RE
    Mester, Z
    Gardner, GJ
    [J]. ANALYTICAL CHEMISTRY, 2004, 76 (08) : 2401 - 2405
  • [4] Miniaturized Dielectric Barrier Discharge Carbon Atomic Emission Spectrometry with Online Microwave-Assisted Oxidation for Determination of Total Organic Carbon
    Han, Bingjun
    Jiang, Xiaoming
    Hou, Xiandeng
    Zheng, Chengbin
    [J]. ANALYTICAL CHEMISTRY, 2014, 86 (13) : 6214 - 6219
  • [5] Dielectric Barrier Discharge Carbon Atomic Emission Spectrometer: Universal GC Detector for Volatile Carbon-Containing Compounds
    Han, Bingjun
    Jiang, Xiaoming
    Hou, Xiandeng
    Zheng, Chengbin
    [J]. ANALYTICAL CHEMISTRY, 2014, 86 (01) : 936 - 942
  • [6] Dielectric Barrier Discharge Ionization for Liquid Chromatography/Mass Spectrometry
    Hayen, Heiko
    Michels, Antje
    Franzke, Joachim
    [J]. ANALYTICAL CHEMISTRY, 2009, 81 (24) : 10239 - 10245
  • [7] Dielectric barrier discharge micro-plasma emission source for the determination of thimerosal in vaccines by photochemical vapor generation
    He, Haiyang
    Zhu, Zhenli
    Zheng, Hongtao
    Xiao, Qing
    Jin, Lanlan
    Hu, Shenghong
    [J]. MICROCHEMICAL JOURNAL, 2012, 104 : 7 - 11
  • [8] Elemental Determination of Microsamples by Liquid Film Dielectric Barrier Discharge Atomic Emission Spectrometry
    He, Qian
    Zhu, Zhenli
    Hu, Shenghong
    Zheng, Hongtao
    Jin, Lanlan
    [J]. ANALYTICAL CHEMISTRY, 2012, 84 (09) : 4179 - 4184
  • [9] Direct and simultaneous determination of arsenic, manganese, cobalt and nickel in urine with a multielement graphite furnace atomic absorption spectrometer
    Hsiang, MC
    Sung, YH
    Huang, SD
    [J]. TALANTA, 2004, 62 (04) : 791 - 799
  • [10] Dielectric Barrier Discharge in Analytical Spectrometry
    Hu, Jing
    Li, Wei
    Zheng, Chengbin
    Hou, Xiandeng
    [J]. APPLIED SPECTROSCOPY REVIEWS, 2011, 46 (05) : 368 - 387