Representing de Rham cohomology classes on an open Riemann surface by holomorphic forms

被引:4
作者
Alarcon, Antonio [1 ,2 ]
Larusson, Finnur [3 ]
机构
[1] Univ Granada, Dept Geometria & Topol, Campus Fuentenueva S-N, E-18071 Granada, Spain
[2] Univ Granada, Inst Matemat IEMath GR, Campus Fuentenueva S-N, E-18071 Granada, Spain
[3] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
Riemann surface; de Rham cohomology; minimal surface; holomorphic null curve; Serre fibration; convex integration; period-dominating spray;
D O I
10.1142/S0129167X17400043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a connected open Riemann surface. Let Y be an Oka domain in the smooth locus of an analytic subvariety of C-n, n >= 1, such that the convex hull of Y is all of C-n. Let O*( X, Y) be the space of nondegenerate holomorphic maps X -> Y. Take a holomorphic 1-form theta on X, not identically zero, and let pi : O*( X, Y) -> H-1( X, C-n) send a map g to the cohomology class of g theta. Our main theorem states that pi is a Serre fibration. This result subsumes the 1971 theorem of Kusunoki and Sainouchi that both the periods and the divisor of a holomorphic form on X can be prescribed arbitrarily. It also subsumes two parametric h-principles in minimal surface theory proved by Forstneric and Larusson in 2016.
引用
收藏
页数:12
相关论文
共 11 条
[1]  
Alarcon A., 2014, J REINE ANG IN PRESS
[2]   Null curves and directed immersions of open Riemann surfaces [J].
Alarcon, Antonio ;
Forstneric, Franc .
INVENTIONES MATHEMATICAE, 2014, 196 (03) :733-771
[3]   Development of analytic Functions on Riemann surfaces. [J].
Behnke, Heinrich ;
Stein, Karl .
MATHEMATISCHE ANNALEN, 1947, 120 :430-461
[4]  
Florack H, 1948, REGULARE MEROMORPHE
[5]  
Forster O., 1981, GRADUATE TEXTS MATH, V81
[6]  
Forstneric F., 2016, COMM ANAL G IN PRESS
[7]  
Forstneric F., 2011, ERGEBNISSE MATH IHRE, V3
[8]  
Forstneric F, 2011, NEW YORK J MATH, V17A, P11
[9]  
Goerss Paul G., 1999, Progress in Mathematics, V174
[10]   IMMERSION OF OPEN RIEMANN SURFACES [J].
GUNNING, RC ;
NARASIMHAN .
MATHEMATISCHE ANNALEN, 1967, 174 (02) :103-&