Fluid simulations with atomistic resolution: multiscale model with account of nonlocal momentum transfer

被引:0
作者
Svitenkov, Andrew I. [1 ]
Chivilikhin, Sergey A. [1 ]
Hoekstra, Alfons G. [1 ,2 ]
Boukhanovsky, Alexander V. [1 ]
机构
[1] ITMO Univ, St Petersburg, Russia
[2] Univ Amsterdam, NL-1012 WX Amsterdam, Netherlands
来源
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE | 2015年 / 51卷
关键词
Multiscale simulation; fluid dynamics; transfer processes; Green-Kubo relations; molecular dynamics; nanoscale flow;
D O I
10.1016/j.procs.2015.05.279
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Nano- and microscale flow phenomena turn out to be highly non-trivial for simulation and require the use of heterogeneous modeling approaches. While the continuum Navier-Stokes equations and related boundary conditions quickly break down at those scales, various direct simulation methods and hybrid models have been applied, such as Molecular Dynamics and Dissipative Particle Dynamics. Nonetheless, a continuum model for nanoscale flow is still an unsolved problem. We present a model taking into account nonlocal momentum transfer. Instead of a bulk viscosity an improved system of parameters of liquid properties, represented by a spatial scalar function for momentum transfer rate between neighboring volumes, is used. Our model does not require boundary conditions on the channel walls. Common nanoflow models relying on a bulk viscosity in combination with a slip boundary condition can be obtained from the model. The required model parameters can be calculated from momentum density fluctuations obtained by Molecular Dynamics simulations. Thus, our model is multiscale, however, the continuum model is applied in the whole region of the simulation. We demonstrate good agreed with nanoflow in a tube as obtained by complete Molecular Dynamics.
引用
收藏
页码:1108 / 1117
页数:10
相关论文
共 21 条
[1]   A hybrid molecular continuum method using point wise coupling [J].
Asproulis, Nikolaos ;
Kalweit, Marco ;
Drikakis, Dimitris .
ADVANCES IN ENGINEERING SOFTWARE, 2012, 46 (01) :85-92
[2]   Fluid simulations with atomistic resolution: a hybrid multiscale method with field-wise coupling [J].
Borg, Matthew K. ;
Lockerby, Duncan A. ;
Reese, Jason M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 255 :149-165
[3]   A multiscale method for micro/nano flows of high aspect ratio [J].
Borg, Matthew K. ;
Lockerby, Duncan A. ;
Reese, Jason M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 233 :400-413
[4]  
Chivilikhin SA, 2008, RUSS J MATH PHYS, V15, P409
[5]   Coupling lattice Boltzmann and molecular dynamics models for dense fluids [J].
Dupuis, A. ;
Kotsalis, E. M. ;
Koumoutsakos, P. .
PHYSICAL REVIEW E, 2007, 75 (04)
[6]  
E W, 2007, COMMUN COMPUT PHYS, V2, P367
[7]   Triple-decker: Interfacing atomistic-mesoscopic-continuum flow regimes [J].
Fedosov, Dmitry A. ;
Karniadakis, George Em .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (04) :1157-1171
[8]   Nanoflow hydrodynamics [J].
Hansen, J. S. ;
Dyre, Jeppe C. ;
Daivis, Peter J. ;
Todd, B. D. ;
Bruus, Henrik .
PHYSICAL REVIEW E, 2011, 84 (03)
[9]   Prediction of fluid velocity slip at solid surfaces [J].
Hansen, J. S. ;
Todd, B. D. ;
Daivis, Peter J. .
PHYSICAL REVIEW E, 2011, 84 (01)
[10]   A study of the anisotropy of stress in a fluid confined in a nanochannel [J].
Hartkamp, Remco ;
Ghosh, A. ;
Weinhart, T. ;
Luding, S. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (04) :044711