A Posteriori Local Discontinuous Galerkin Error Estimation for Two-Dimensional Convection-Diffusion Problems

被引:16
作者
Baccouch, Mahboub [1 ]
Adjerid, Slimane [2 ]
机构
[1] Univ Nebraska, Dept Math, Omaha, NE 68182 USA
[2] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
Local discontinuous Galerkin method; Convection-diffusion problems; Superconvergence; A posteriori error estimates; HYPERBOLIC PROBLEMS; LDG METHOD; SUPERCONVERGENCE;
D O I
10.1007/s10915-014-9861-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a simple, efficient, and asymptotically correct a posteriori error estimates for a minimal dissipation local discontinuous Galerkin method applied to two-dimensional diffusion and convection-diffusion problems on rectangular meshes. The finite element spaces are obtained by performing a local error analysis and a posteriori error estimates are computed by solving local problems on each element. We present computational results for several problems to show the efficiency and accuracy of our error estimates. It is shown that even in the presence of boundary layers our error estimates converge to the true error under mesh refinement when Shishkin meshes are used.
引用
收藏
页码:399 / 430
页数:32
相关论文
共 50 条
[31]   A POSTERIORI ERROR ESTIMATION FOR A DEFECT-CORRECTION METHOD APPLIED TO CONVECTION-DIFFUSION PROBLEMS [J].
Linss, Torsten ;
Kopteva, Natalia .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2010, 7 (04) :718-733
[32]   A supercloseness result for the discontinuous Galerkin stabilization of convection-diffusion problems on shishkin meshes [J].
Roos, Hans-Goerg ;
Zarin, Helena .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (06) :1560-1576
[33]   The local discontinuous Galerkin finite element method for a class of convection-diffusion equations [J].
Wu, Wenjuan ;
Feng, Xinlong ;
Liu, Demin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) :734-752
[34]   Analysis of local discontinuous Galerkin method for time-space fractional convection-diffusion equations [J].
Ahmadinia, M. ;
Safari, Z. ;
Fouladi, S. .
BIT NUMERICAL MATHEMATICS, 2018, 58 (03) :533-554
[35]   A Local Discontinuous Galerkin Method for Two-Dimensional Time Fractional Diffusion Equations [J].
Yeganeh, Somayeh ;
Mokhtari, Reza ;
Hesthaven, Jan S. .
COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2020, 2 (04) :689-709
[36]   Superconvergence and a posteriori error estimates for the LDG method for convection-diffusion problems in one space dimension [J].
Baccouch, Mahboub .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (05) :1130-1153
[37]   A unified a posteriori error estimate of local discontinuous Galerkin approximations for reactive transport problems [J].
Jiming Yang .
Indian Journal of Pure and Applied Mathematics, 2015, 46 :759-772
[38]   A UNIFIED A POSTERIORI ERROR ESTIMATE OF LOCAL DISCONTINUOUS GALERKIN APPROXIMATIONS FOR REACTIVE TRANSPORT PROBLEMS [J].
Yang, Jiming .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (06) :759-772
[39]   A POSTERIORI ERROR ESTIMATES FOR A LOCAL DISCONTINUOUS GALERKIN APPROXIMATION OF SEMILINEAR SECOND-ORDER ELLIPTIC PROBLEMS ON CARTESIAN GRIDS [J].
Baccouch, Mahboub .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2023, 20 (06) :772-804
[40]   Superconvergence analysis of local discontinuous Galerkin methods for linear convection-diffusion equations in one space dimension [J].
Zhang, Jun ;
Chen, Xiangling .
COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (01)