A Posteriori Local Discontinuous Galerkin Error Estimation for Two-Dimensional Convection-Diffusion Problems

被引:16
|
作者
Baccouch, Mahboub [1 ]
Adjerid, Slimane [2 ]
机构
[1] Univ Nebraska, Dept Math, Omaha, NE 68182 USA
[2] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
Local discontinuous Galerkin method; Convection-diffusion problems; Superconvergence; A posteriori error estimates; HYPERBOLIC PROBLEMS; LDG METHOD; SUPERCONVERGENCE;
D O I
10.1007/s10915-014-9861-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a simple, efficient, and asymptotically correct a posteriori error estimates for a minimal dissipation local discontinuous Galerkin method applied to two-dimensional diffusion and convection-diffusion problems on rectangular meshes. The finite element spaces are obtained by performing a local error analysis and a posteriori error estimates are computed by solving local problems on each element. We present computational results for several problems to show the efficiency and accuracy of our error estimates. It is shown that even in the presence of boundary layers our error estimates converge to the true error under mesh refinement when Shishkin meshes are used.
引用
收藏
页码:399 / 430
页数:32
相关论文
共 50 条