Gyroscopic modes decoupling method in parametric instability analysis of gyroscopic systems

被引:3
作者
Qian, Y. J. [1 ]
Yang, X. D. [1 ]
Wu, H. [1 ]
Zhang, W. [1 ]
Yang, T. Z. [2 ]
机构
[1] Beijing Univ Technol, Coll Mech Engn, Beijing 100124, Peoples R China
[2] Tianjing Univ, Dept Mech, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Axially moving material; Decoupling of gyroscopic modes; Parametric instability; Perturbation method; Gyroscopic system; FREE-VIBRATION ANALYSIS; AXIALLY MOVING CONTINUA; INTERNAL RESONANCES; ROTATING BEAMS; STABILITY; STRINGS; SPEED; SHAFT; DISKS;
D O I
10.1007/s10409-018-0762-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Traditional procedures to treat vibrations of gyroscopic continua involve direct application of perturbation methods to a system with both a strong gyroscopic term and other weakly coupled terms. In this study, a gyroscopic modes decoupling method is used to obtain an equivalent system with decoupled gyroscopic modes having only weak couplings. Taking the axially moving string as an example, the instability boundaries in the vicinity of parametric resonances are detected using both the traditional coupled gyroscopic system and our system with decoupled gyroscopic modes, and the results are compared to show the advantages and disadvantages of each method.
引用
收藏
页码:963 / 969
页数:7
相关论文
共 27 条
  • [11] Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances
    Huang, J. L.
    Su, R. K. L.
    Li, W. H.
    Chen, S. H.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2011, 330 (03) : 471 - 485
  • [12] A fully consistent linearized model for vibration analysis of rotating beams in the framework of geometrically exact theory
    Invernizzi, Davide
    Dozio, Lorenzo
    [J]. JOURNAL OF SOUND AND VIBRATION, 2016, 370 : 351 - 371
  • [13] Nonlinear vibrations of spring-supported axially moving string
    Kesimli, A.
    Ozkaya, E.
    Bagdatli, S. M.
    [J]. NONLINEAR DYNAMICS, 2015, 81 (03) : 1523 - 1534
  • [14] On the equilibrium configurations of an elastically constrained rotating disk: An analytical approach
    Khorasany, Ramin M. H.
    Hutton, Stanley G.
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 2011, 38 (04) : 288 - 293
  • [15] The origin of in-plane stresses in axially moving orthotropic continua
    Kurki, Matti
    Jeronen, Juha
    Saksa, Tytti
    Tuovinen, Tero
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 81 : 43 - 62
  • [16] Li-Qun Chen, 2005, Applied Mechanics Review, V58, P91, DOI 10.1115/1.1849169
  • [17] On resonances and the applicability of Galerkin's truncation method for an axially moving string with time-varying velocity
    Malookani, Rajab A.
    van Horssen, Wim T.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2015, 344 : 1 - 17
  • [18] A New Methodology for Modeling and Free Vibrations Analysis of Rotating Shaft Based on the Timoshenko Beam Theory
    Mirtalaie, S. H.
    Hajabasi, M. A.
    [J]. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2016, 138 (02):
  • [19] Nayfeh A.H., 2004, Nonlinear oscillations, Physics textbook
  • [20] Combination, principal parametric and internal resonances of an accelerating beam under two frequency parametric excitation
    Sahoo, Bamadev
    Panda, L. N.
    Pohit, G.
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2016, 78 : 35 - 44