Mechanism of homocysteine-induced Rac1/NADPH oxidase activation in mesangial cells: Role of guanine nucleotide exchange factor Vav2

被引:27
作者
Yi, Fan [1 ]
Chen, Qi-Zheng [1 ]
Jin, Si [1 ]
Li, Pin-Lan [1 ]
机构
[1] Virginia Commonwealth Univ, Med Coll Virginia, Dept Pharmacol & Toxicol, Richmond, VA 23298 USA
关键词
small G -protein; redox signaling; sphingolipids; hyperhomocysteinemia; kinase;
D O I
10.1159/000110451
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We have demonstrated that homocysteine (Hcys) stimulates de novo ceramide synthesis and thereby induces NADPH oxidase activation by increase of Rac GTPase activity in rat mesangial cells (RMCs). However, which isofrom of Rac GTPases is involved in Hcys-induced NADPH oxidase activity and what mechanism mediates Hcys-induced Rac GTPase activation remain unknown. The present study first addressed the role of Rac1 and then determined the contribution of a subfamily of Guanine Nucleotide Exchange Factors (GEFs), Vav, to the action of Hcys on Rac and NADPH oxidase activities in RMCs. By small interfering RNA (siRNA), it was found that Rac1-siRNA attenuated Hcys-induced superoxide (O-2(-)) production. To explore the mechanism activating Rac by Hcys, GEF-Vav was examined. Vav2 was found to be a predominant isoform among Vav family in RMCs. In Vav2-siRNA transfected RMCs, Hcys-induced Rac activity was blocked, which was accompanied by significant reduction of Hcys-induced O-2(-) production. This Vav2-siRNA also blocked Rac activation induced by C16-Ceramide (C16-Cer), an intermediate lipid product stimulated by Hcys. Furthermore, we found that Hcys induced Vav2 phosphorylation in a time-dependent manner, which could be induced by C16-Cer and blocked by inhibition of de novo ceramide synthesis. These results suggest that Vav2 importantly contributes to Hcys-induced increase in Rac1 activity and consequent activation of NADPH oxidase in RMCs via ceramide-associated tyrosine phosphorylation. Copyright (c) 2007 S. Karger AG, Basel.
引用
收藏
页码:909 / 918
页数:10
相关论文
共 43 条
[1]   ACTIVATION OF THE NADPH OXIDASE INVOLVES THE SMALL GTP-BINDING PROTEIN P21RAC1 [J].
ABO, A ;
PICK, E ;
HALL, A ;
TOTTY, N ;
TEAHAN, CG ;
SEGAL, AW .
NATURE, 1991, 353 (6345) :668-670
[2]   Structural basis for relief of autoinhibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation [J].
Aghazadeh, B ;
Lowry, WE ;
Huang, XY ;
Rosen, MK .
CELL, 2000, 102 (05) :625-633
[3]   The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology [J].
Bedard, Karen ;
Krause, Karl-Heinz .
PHYSIOLOGICAL REVIEWS, 2007, 87 (01) :245-313
[4]   Regulation of the phagocyte NADPH oxidase by Rac GTPase [J].
Bokoch, Gary M. ;
Zhao, Tieming .
ANTIOXIDANTS & REDOX SIGNALING, 2006, 8 (9-10) :1533-1548
[5]   Current molecular models for NADPH oxidase regulation by Rac GTPase [J].
Bokoch, GM ;
Diebold, BA .
BLOOD, 2002, 100 (08) :2692-2696
[6]   Regulatory and signaling properties of the Vav family [J].
Bustelo, XR .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (05) :1461-1477
[7]   NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease [J].
Cai, H .
CIRCULATION RESEARCH, 2005, 96 (08) :818-822
[8]   Nox1-dependent reactive oxygen generation is regulated by Rac1 [J].
Cheng, Guangjie ;
Diebold, Becky A. ;
Hughes, Yasmin ;
Lambeth, J. David .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (26) :17718-17726
[9]   Hyperhomocysteinemia: detection, risk assessment, and treatment [J].
Dennis, VW ;
Nurko, S ;
Robinson, K .
CURRENT OPINION IN NEPHROLOGY AND HYPERTENSION, 1997, 6 (05) :483-488
[10]   Rho GTPases in cell biology [J].
Etienne-Manneville, S ;
Hall, A .
NATURE, 2002, 420 (6916) :629-635