Development and evaluation of superporous hydroxyapatite ceramics with triple pore structure as bone tissue scaffold

被引:12
|
作者
Sakamoto, Michiko [1 ]
机构
[1] HOYA Corp, PENTAX New Ceram Div, R&D Dept, Akishima, Tokyo 1960012, Japan
关键词
Hydroxyapatite; High porosity; Macro pores; Interconnected pores; Micro pores; Triple pore structure;
D O I
10.2109/jcersj2.118.753
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recently, regeneration therapy has been developed and uses a cellular activity to cure bone defects, requiring HAp with porous spaces for the cells. We have developed superporous HAp (HAp-S). The macro pore size of HAp-S was approximately 50 to 300 gm. The macro pores were very uniform. Moreover, HAp-S had many interconnecting pores and micro pores on the pore wall. HAp-S showed regenerative bone tissue, integration with the surrounding tissue and recovery of the compression strength of the defect area in the early stage. These results strongly suggest that the controlled triple pore structure, namely, uniform macro pores, many interconnecting pores and micro pores on the pore wall, advances osteogenesis. HAp-S was confirmed to have the most suitable pore structure for bone regeneration as the bone substitute material, and as being a useful material for application to bone disease. (C)2010 The Ceramic Society of Japan. All rights reserved.
引用
收藏
页码:753 / 757
页数:5
相关论文
共 50 条
  • [1] Development of a hydroxyapatite bone tissue engineering scaffold with a trimodal pore structure
    Buckley, C. T.
    O'Kelly, K. U.
    BIOCERAMICS, VOL 20, PTS 1 AND 2, 2008, 361-363 : 931 - 934
  • [2] Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering
    Azami, Mahmoud
    Samadikuchaksaraei, Ali
    Poursamar, Seyed Ali
    INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2010, 33 (02) : 86 - 95
  • [3] Evaluation of Collagen-hydroxyapatite Scaffold for Bone Tissue Engineering
    Dey, Sangeeta
    Pal, S.
    13TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, VOLS 1-3, 2009, 23 (1-3): : 1267 - 1270
  • [4] Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering
    Zhang, Jiazhen
    Nie, Jingyi
    Zhang, Qirong
    Li, Youliang
    Wang, Zhengke
    Hu, Qiaoling
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2014, 25 (01) : 61 - 74
  • [5] Chitosan/hydroxyapatite hybrid scaffold for bone tissue engineering
    Brun, V.
    Guillaume, C.
    Alami, S. Mechiche
    Josse, J.
    Jing, J.
    Draux, F.
    Bouthors, S.
    Laurent-Maquin, D.
    Gangloff, S. C.
    Kerdjoudj, H.
    Velard, F.
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2014, 24 : S63 - S73
  • [6] A Porous Hydroxyapatite/Gelatin Nanocomposite Scaffold for Bone Tissue Repair: In Vitro and In Vivo Evaluation
    Azami, Mahmoud
    Tavakol, Shima
    Samadikuchaksaraei, Ali
    Hashjin, Mehran Solati
    Baheiraei, Nafiseh
    Kamali, Mehdi
    Nourani, Mohammad Reza
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2012, 23 (18) : 2353 - 2368
  • [7] Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering
    Manuel Fernandez, Juan
    Silvina Molinuevo, M.
    Susana Cortizo, M.
    Cortizo, Ana M.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2011, 5 (06) : E126 - E135
  • [8] Biomimetic porous collagen/hydroxyapatite scaffold for bone tissue engineering
    Chen, Li
    Wu, Zhenxu
    Zhou, Yulai
    Li, Linlong
    Wang, Yu
    Wang, Zongliang
    Chen, Yue
    Zhang, Peibiao
    JOURNAL OF APPLIED POLYMER SCIENCE, 2017, 134 (37)
  • [9] Hydroxyapatite reinforced natural polymer scaffold for bone tissue regeneration
    Ragunathan, Sreepadmini
    Govindasamy, Gopu
    Raghul, D. R.
    Karuppaswamy, M.
    VijayachandraTogo, R. K.
    MATERIALS TODAY-PROCEEDINGS, 2020, 23 : 111 - 118
  • [10] Fish scale derived hydroxyapatite scaffold for bone tissue engineering
    Mondal, B.
    Mondal, S.
    Mondal, A.
    Mandal, N.
    MATERIALS CHARACTERIZATION, 2016, 121 : 112 - 124