On the characteristics of functional magnetic resonance imaging of the brain

被引:225
作者
Ogawa, S [1 ]
Menon, RS
Kim, SG
Ugurbil, K
机构
[1] Lucent Technol, Bell Labs, Biol Computat Res, Murray Hill, NJ 07974 USA
[2] John P Robarts Res Inst, Lab Funct Magnet Resonance Res, London, ON N6A 5K8, Canada
[3] Univ Minnesota, Sch Med, Dept Radiol, Ctr Magnet Resonance Res, Minneapolis, MN 55455 USA
来源
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE | 1998年 / 27卷
关键词
functional activation; hemodynamics; metabolic load; BOLD; perfusion;
D O I
10.1146/annurev.biophys.27.1.447
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this review we discuss various recent topics that characterize functional magnetic resonance imaging (fMRI). These topics include a brief description of MRI image acquisition, how to cope with noise or signal fluctuation, the basis of fMRI signal changes, and the relation of MRI signal to neuronal events. Several observations of fMRI that show good correlation to the neurofunction are referred to. Temporal characteristics of fMRI signals and examples of how the feature of real time measurement is utilized are then described. The question of spatial resolution of fMRI, which must be dictated by the vascular structure serving the functional system, is discussed based on various fMRI observations. Finally, the advantage of fMRI mapping is shown in a few examples. Reviewing the vast number of recent fMRI application that have now been reported is beyond the scope of this article.
引用
收藏
页码:447 / +
页数:30
相关论文
共 107 条
[1]  
BANDETTINI P, 1995, THESIS MED COLL WISC
[2]  
BANDETTINI P, 1997, P ANN M INT SOC MAGN, P740
[3]   TIME COURSE EPI OF HUMAN BRAIN-FUNCTION DURING TASK ACTIVATION [J].
BANDETTINI, PA ;
WONG, EC ;
HINKS, RS ;
TIKOFSKY, RS ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1992, 25 (02) :390-397
[4]   PROCESSING STRATEGIES FOR TIME-COURSE DATA SETS IN FUNCTIONAL MRI OF THE HUMAN BRAIN [J].
BANDETTINI, PA ;
JESMANOWICZ, A ;
WONG, EC ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1993, 30 (02) :161-173
[5]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[6]   Hypercapnia reversibly suppresses low-frequency fluctuations in the human motor cortex during rest using echo-planar MRI [J].
Biswal, B ;
Hudetz, AG ;
Yetkin, FZ ;
Haughton, VM ;
Hyde, JS .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1997, 17 (03) :301-308
[7]   Reduction of physiological fluctuations in fMRI using digital filters [J].
Biswal, B ;
DeYoe, EA ;
Hyde, JS .
MAGNETIC RESONANCE IN MEDICINE, 1996, 35 (01) :107-113
[8]   THE INTRAVASCULAR CONTRIBUTION TO FMRI SIGNAL CHANGE - MONTE-CARLO MODELING AND DIFFUSION-WEIGHTED STUDIES IN-VIVO [J].
BOXERMAN, JL ;
BANDETTINI, PA ;
KWONG, KK ;
BAKER, JR ;
DAVIS, TL ;
ROSEN, BR ;
WEISSKOFF, RM .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (01) :4-10
[9]   MR CONTRAST DUE TO INTRAVASCULAR MAGNETIC-SUSCEPTIBILITY PERTURBATIONS [J].
BOXERMAN, JL ;
HAMBERG, LM ;
ROSEN, BR ;
WEISSKOFF, RM .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :555-566
[10]  
BROCA P, 1855, PROPRIETES FONCTIONS