Complexity function and forcing in the 2D quasi-periodic rauzy tiling

被引:4
作者
Zhuravlev, V. G. [1 ]
Maleev, A. V. [1 ]
机构
[1] Vladimir State Pedagog Univ, Vladimir 600024, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1063774507040037
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The quantitative characteristics of the long-range translational order in the 2D quasi-periodic Rauzy tiling (complexity function and forcing depth) have been investigated. It is proved that the complexity function C(n) is equal to the number of figures in the n-corona grown from a seed composed of three figures of different types. The complexity function c(n) is found to be additive. A relationship between the jumps in the maximum forcing depth and large incomplete particular expansions in a chain fraction of irrational angles of rotation of a unit circle, which determine the growth of geodetic chains, is established.
引用
收藏
页码:582 / 588
页数:7
相关论文
共 14 条
[1]   Imbalances in Arnoux-Rauzy sequences [J].
Cassaigne, J ;
Ferenczi, S ;
Zamboni, LQ .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (04) :1265-+
[2]  
FRENCZI S, 1997, J NUMBER THEORY, V67, P146
[3]  
Grunbaum B., 1987, TILING PATTERNS
[4]  
JANOT C, 1994, QUASICRYSTALLS
[5]   Maximal pattern complexity for discrete systems [J].
Kamae, T ;
Zamboni, L .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 :1201-1214
[6]  
LAGARIAS J, 2000, P AM MATH SOC, V13, P61
[7]  
MINNICK L, 1998, THESIS WILLIAMS COOL
[8]  
SENECHAL M, 1995, QUASICRYSTALLS GEOME
[9]   ATOMISTIC GROWTH OF 2-DIMENSIONAL QUASI-CRYSTALS [J].
SZETO, KY ;
WANG, ZM .
PHYSICAL REVIEW B, 1990, 41 (03) :1347-1358
[10]   STRICTLY LOCAL GROWTH OF PENROSE PATTERNS [J].
VANOPHUYSEN, G ;
WEBER, M ;
DANZER, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (02) :281-290