On intersections of complete intersection ideals

被引:3
作者
Cimpoeas, Mircea [1 ]
Stamate, Dumitru I. [2 ,3 ]
机构
[1] Romanian Acad, Simion Stoilow Inst Math, Res Unit 5,POB 1-764, Bucharest 014700, Romania
[2] Univ Bucharest, Fac Math & Comp Sci, Str Acad 14, Bucharest, Romania
[3] Romanian Acad, Simion Stoilow Inst Math, Res Grp Project, PN II RU PD 2012-3-0656,POB 1-764, Bucharest 014700, Romania
关键词
Complete intersection; Numerical semigroup; Toric ring; Intersections; Betti numbers; Periodicity; NUMERICAL SEMIGROUP; MONOMIAL CURVES; GENERATORS;
D O I
10.1016/j.jpaa.2016.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for certain families of toric complete intersection ideals, the arbitrary intersections of elements in the same family are again complete intersections. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:3702 / 3712
页数:11
相关论文
共 15 条
  • [1] [Anonymous], 2012, Singular 3-1-6 | A computer algebra system for polynomial computations
  • [2] DELORME C, 1976, ANN SCI ECOLE NORM S, V9, P145
  • [3] Eisenbud D., 1995, COMMUTATIVE ALGEBRA
  • [4] Ene V., 2012, GRADUATE STUDIES MAT, V130
  • [5] Minimal graded free resolutions for monomial curves defined by arithmetic sequences
    Gimenez, Philippe
    Sengupta, Indranath
    Srinivasan, Hema
    [J]. JOURNAL OF ALGEBRA, 2013, 388 : 294 - 310
  • [6] Greuel G.-M., 2008, A Singular introduction to commutative algebra
  • [7] WHEN IS A REGULAR SEQUENCE SUPER REGULAR
    HERZOG, J
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1981, 83 (OCT) : 183 - 195
  • [8] On the defining equations of the tangent cone of a numerical semigroup ring
    Herzog, Juergen
    Stamate, Dumitru I.
    [J]. JOURNAL OF ALGEBRA, 2014, 418 : 8 - 28
  • [9] Jafari R., 2016, ARXIV160301078MATHAC
  • [10] Jayanthan AV, 2013, P AM MATH SOC, V141, P4199