Mitigating Cascading Failures in Power Grids via Markov Decision-Based Load-Shedding With DC Power Flow Model

被引:9
作者
Das, Pankaz [1 ]
Shuvro, Rezoan A. [1 ]
Povinelli, Kassie [1 ]
Sorrentino, Francesco [2 ]
Hayat, Majeed M. [1 ]
机构
[1] Marquette Univ, Dept Elect & Comp Engn, Milwaukee, WI 53233 USA
[2] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA
来源
IEEE SYSTEMS JOURNAL | 2022年 / 16卷 / 03期
基金
美国国家科学基金会;
关键词
Costs; Power grids; Power system dynamics; Power system reliability; Cost function; Computational modeling; Analytical models; Cascading failures (CFs); dc power flow; load-shedding (LS); Markov decision process (MDP); power grids; WIDE-AREA PROTECTION; SYSTEM; SIMULATION; NETWORKS; DYNAMICS;
D O I
10.1109/JSYST.2022.3175359
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Despite the reliability of modern power systems, large blackouts due to cascading failures (CFs) do occur in power grids with enormous economic and societal costs. In this article, CFs in power grids are theoretically modeled proposing a Markov decision process (MDP) framework with the aim of developing optimal load-shedding (LS) policies to mitigate CFs. The embedded Markov chain of the MDP, established earlier to capture the dynamics of CFs, features a reduced state-space and state-dependent transition probabilities. We introduce appropriate actions affecting the dynamics of CFs and associated costs. Optimal LS policies are computed that minimize the expected cumulative cost associated with CFs. Numerical simulations on the IEEE 118 and IEEE 300 bus systems show that the actions derived by the MDP result in minimum total cost of CFs, compared to fixed and random policies. Moreover, the optimality of derived policies is validated by a CF simulation based on dc power flow for the IEEE 118 bus system. Therefore, such actions developed by the proposed theoretical MDP framework can serve as a baseline for devising optimal LS strategies to mitigate CFs in power grids.
引用
收藏
页码:4048 / 4059
页数:12
相关论文
共 54 条
[1]   Wide-area protection and emergency control [J].
Begovic, M ;
Novosel, D ;
Karlsson, D ;
Henville, C ;
Michel, G .
PROCEEDINGS OF THE IEEE, 2005, 93 (05) :876-891
[2]   Wide-area protection and power system utilization [J].
Bertsch, J ;
Carnal, C ;
Karlsson, D ;
Mcdaniel, J ;
Vu, K .
PROCEEDINGS OF THE IEEE, 2005, 93 (05) :997-1003
[3]   Benchmarking and Validation of Cascading Failure Analysis Tools [J].
Bialek, J. ;
Ciapessoni, E. ;
Cirio, D. ;
Cotilla-Sanchez, E. ;
Dent, C. ;
Dobson, I. ;
Henneaux, P. ;
Hines, P. ;
Jardim, J. ;
Miller, S. ;
Panteli, M. ;
Papic, M. ;
Pitto, A. ;
Quiros-Tortos, J. ;
Wu, D. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (06) :4887-4900
[4]  
Bienstock D, 2011, IEEE DECIS CONTR P, P2166, DOI 10.1109/CDC.2011.6160415
[5]  
Bolhasan AM, 2020, POWER SYST, P447, DOI 10.1007/978-3-030-23723-3_18
[6]   Catastrophic cascade of failures in interdependent networks [J].
Buldyrev, Sergey V. ;
Parshani, Roni ;
Paul, Gerald ;
Stanley, H. Eugene ;
Havlin, Shlomo .
NATURE, 2010, 464 (7291) :1025-1028
[7]   Critical points and transitions in an electric power transmission model for cascading failure blackouts [J].
Carreras, BA ;
Lynch, VE ;
Dobson, I ;
Newman, DE .
CHAOS, 2002, 12 (04) :985-994
[8]   Comparing the Effects of Failures in Power Grids Under the AC and DC Power Flow Models [J].
Cetinay, Hale ;
Soltan, Saleh ;
Kuipers, Fernando A. ;
Zussman, Gil ;
Van Mieghem, Piet .
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2018, 5 (04) :301-312
[9]   Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model [J].
Chen, J ;
Thorp, JS ;
Dobson, I .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2005, 27 (04) :318-326
[10]   Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization [J].
Dobson, Ian ;
Carreras, Benjamin A. ;
Lynch, Vickie E. ;
Newman, David E. .
CHAOS, 2007, 17 (02)