Increasing radial solutions for Neumann problems without growth restrictions

被引:47
作者
Bonheure, Denis [1 ]
Noris, Benedetta [2 ]
Weth, Tobias [3 ]
机构
[1] Univ Libre Bruxelles, Dept Math, B-1050 Brussels, Belgium
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20126 Milan, Italy
[3] Goethe Univ Frankfurt, Inst Math, D-60054 Frankfurt, Germany
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2012年 / 29卷 / 04期
关键词
Supercritical problems; Krasnosel'skii fixed point; Invariant cone; Gradient flow;
D O I
10.1016/j.anihpc.2012.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of positive increasing radial solutions for superlinear Neumann problems in the ball. We do not impose any growth condition on the nonlinearity at infinity and our assumptions allow for interactions with the spectrum. In our approach we use both topological and variational arguments, and we overcome the lack of compactness by considering the cone of nonnegative, nondecreasing radial functions of H-1 (B). (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:573 / 588
页数:16
相关论文
共 17 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
[Anonymous], 2006, PROGR MATH
[4]  
[Anonymous], 1960, SOVIET MATH DOKL
[5]   A note on the radial solutions for the supercritical Henon equation [J].
Barutello, Vivina ;
Secchi, Simone ;
Serra, Enrico .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) :720-728
[7]  
Bonheure D., MULTIPLE RADIAL POSI
[8]   Multiple positive radial solutions on annuli for nonlinear Neumann problems with large growth [J].
Bonheure, Denis ;
Serra, Enrico .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (02) :217-235
[9]   Super-critical boundary bubbling in a semilinear Neumann problem [J].
del Pino, M ;
Musso, M ;
Pistoia, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (01) :45-82
[10]   POSITIVE CONSTRAINED MINIMIZERS FOR SUPERCRITICAL PROBLEMS IN THE BALL [J].
Grossi, Massimo ;
Noris, Benedetta .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (06) :2141-2154