Biochemical, inhibition and inhibitor resistance studies of xenotropic murine leukemia virus-related virus reverse transcriptase

被引:12
作者
Ndongwe, Tanyaradzwa P. [1 ]
Adedeji, Adeyemi O. [1 ]
Michailidis, Eleftherios [1 ]
Ong, Yee Tsuey [1 ]
Hachiya, Atsuko [1 ]
Marchand, Bruno [1 ]
Ryan, Emily M. [1 ]
Rai, Devendra K. [1 ]
Kirby, Karen A. [1 ]
Whatley, Angela S. [1 ]
Burke, Donald H. [1 ,2 ]
Johnson, Marc [1 ]
Ding, Shilei [3 ]
Zheng, Yi-Min [1 ]
Liu, Shan-Lu [1 ,3 ]
Kodama, Ei-Ichi [4 ]
Delviks-Frankenberry, Krista A. [5 ]
Pathak, Vinay K. [5 ]
Mitsuya, Hiroaki [6 ,7 ]
Parniak, Michael A. [8 ]
Singh, Kamalendra [1 ]
Sarafianos, Stefan G. [1 ,2 ]
机构
[1] Univ Missouri, Christopher Bond Life Sci Ctr, Dept Mol Microbiol & Immunol, Sch Med, Columbia, MO 65211 USA
[2] Univ Missouri, Dept Biochem, Columbia, MO 65211 USA
[3] McGill Univ, Dept Microbiol & Immunol, Montreal, PQ, Canada
[4] Tohoku Univ, Sch Med, Dept Internal Med, Div Emerging Infect Dis, Sendai, Miyagi 980, Japan
[5] NCI, HIV Drug Resistance Program, Frederick, MD 21701 USA
[6] Kumamoto Univ, Sch Med, Dept Internal Med, Kumamoto 860, Japan
[7] NIH, Expt Retrovirol Sect, HIV AIDS Malignancy Branch, Bethesda, MD 20892 USA
[8] Univ Pittsburgh, Sch Med, Dept Mol Genet & Biochem, Pittsburgh, PA 15261 USA
基金
加拿大健康研究院;
关键词
CHRONIC-FATIGUE-SYNDROME; HUMAN RETROVIRUS XMRV; CRYSTAL-STRUCTURE; DRUG-RESISTANCE; DNA-SYNTHESIS; PROSTATE-CANCER; IN-VITRO; INFECTIOUS RETROVIRUS; POLYMERASE FIDELITY; ANGSTROM RESOLUTION;
D O I
10.1093/nar/gkr694
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We report key mechanistic differences between the reverse transcriptases (RT) of human immunodeficiency virus type-1 (HIV-1) and of xenotropic murine leukemia virus-related virus (XMRV), a gammaretrovirus that can infect human cells. Steady and pre-steady state kinetics demonstrated that XMRV RT is significantly less efficient in DNA synthesis and in unblocking chain-terminated primers. Surface plasmon resonance experiments showed that the gammaretroviral enzyme has a remarkably higher dissociation rate (k(off)) from DNA, which also results in lower processivity than HIV-1 RT. Transient kinetics of mismatch incorporation revealed that XMRV RT has higher fidelity than HIV-1 RT. We identified RNA aptamers that potently inhibit XMRV, but not HIV-1 RT. XMRV RT is highly susceptible to some nucleoside RT inhibitors, including Translocation Deficient RT inhibitors, but not to non-nucleoside RT inhibitors. We demonstrated that XMRV RT mutants K103R and Q190M, which are equivalent to HIV-1 mutants that are resistant to tenofovir (K65R) and AZT (Q151M), are also resistant to the respective drugs, suggesting that XMRV can acquire resistance to these compounds through the decreased incorporation mechanism reported in HIV-1.
引用
收藏
页码:345 / 359
页数:15
相关论文
共 84 条
[1]   Phenotypic mechanism of HIV-1 resistance to 3′-azido-3′-deoxythymidine (AZT):: Increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase [J].
Arion, D ;
Kaushik, N ;
McCormick, S ;
Borkow, G ;
Parniak, MA .
BIOCHEMISTRY, 1998, 37 (45) :15908-15917
[2]   XMRV Infection in Patients With Prostate Cancer: Novel Serologic Assay and Correlation With PCR and FISH [J].
Arnold, Rebecca S. ;
Makarova, Natalia V. ;
Osunkoya, Adeboye O. ;
Suppiah, Suganthi ;
Scott, Takara A. ;
Johnson, Nicole A. ;
Bhosle, Sushma M. ;
Liotta, Dennis ;
Hunter, Eric ;
Marshall, Fray F. ;
Ly, Hinh ;
Molinaro, Ross J. ;
Blackwell, Jerry L. ;
Petros, John A. .
UROLOGY, 2010, 75 (04) :755-761
[3]   Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design [J].
Bauman, Joseph D. ;
Das, Kalyan ;
Ho, William C. ;
Baweja, Mukta ;
Himmel, Daniel M. ;
Clark, Arthur D., Jr. ;
Oren, Deena A. ;
Boyer, Paul L. ;
Hughes, Stephen H. ;
Shatkin, Aaron J. ;
Arnold, Eddy .
NUCLEIC ACIDS RESEARCH, 2008, 36 (15) :5083-5092
[4]   HIGH-LEVEL RESISTANCE TO (-) ENANTIOMERIC 2'-DEOXY-3'-THIACYTIDINE IN-VITRO IS DUE TO ONE AMINO-ACID SUBSTITUTION IN THE CATALYTIC SITE OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 REVERSE-TRANSCRIPTASE [J].
BOUCHER, CAB ;
CAMMACK, N ;
SCHIPPER, P ;
SCHUURMAN, R ;
ROUSE, P ;
WAINBERG, MA ;
CAMERON, JM .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1993, 37 (10) :2231-2234
[5]   Why do HIV-1 and HIV-2 use different pathways to develop AZT resistance? [J].
Boyer, Paul L. ;
Sarafianos, Stefan G. ;
Clark, Patrick K. ;
Arnold, Eddy ;
Hughes, Stephen H. .
PLOS PATHOGENS, 2006, 2 (02) :101-111
[6]   SELECTION OF HIGH-AFFINITY RNA LIGANDS TO REVERSE-TRANSCRIPTASE - INHIBITION OF CDNA SYNTHESIS AND RNASE-H ACTIVITY [J].
CHEN, H ;
GOLD, L .
BIOCHEMISTRY, 1994, 33 (29) :8746-8756
[7]   Elucidation of the role of arg 110 of murine leukemia virus reverse transcriptase in the catalytic mechanism: Biochemical characterization of its mutant enzymes [J].
Chowdhury, K ;
Kaushik, N ;
Pandey, VN ;
Modak, MJ .
BIOCHEMISTRY, 1996, 35 (51) :16610-16620
[8]   A New Virus for Old Diseases? [J].
Coffin, John M. ;
Stoye, Jonathan P. .
SCIENCE, 2009, 326 (5952) :530-531
[9]   The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus [J].
Das, D ;
Georgiadis, MM .
STRUCTURE, 2004, 12 (05) :819-829
[10]   Structural Basis for the Role of the K65R Mutation in HIV-1 Reverse Transcriptase Polymerization, Excision Antagonism, and Tenofovir Resistance [J].
Das, Kalyan ;
Bandwar, Rajiv P. ;
White, Kirsten L. ;
Feng, Joy Y. ;
Sarafianos, Stefan G. ;
Tuske, Steven ;
Tu, Xiongying ;
Clark, Arthur D., Jr. ;
Boyer, Paul L. ;
Hou, Xiaorong ;
Gaffney, Barbara L. ;
Jones, Roger A. ;
Miller, Michael D. ;
Hughes, Stephen H. ;
Arnold, Eddy .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (50) :35092-35100