Poincare Series of Relative Symmetric Invariants for SLn(C)

被引:0
作者
Jing, Naihuan [1 ,2 ]
Wang, Danxia [1 ,3 ]
Zhang, Honglian [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Huzhou Univ, Dept Math, Huzhou 313000, Zhejiang, Peoples R China
关键词
Symmetric algebra; Poincare series; McKay-Slodowy correspondence; Invariants; Quantum Cartan matrix; FINITE SUBGROUPS; LIE-ALGEBRAS;
D O I
10.1007/s10468-020-09962-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (N,G), where N G <= SLn(C), be a pair of finite groups and V a finite-dimensional fundamental G-module. We study the G-invariants in the symmetric algebra S(V ) = circle plus S-k >= 0(k)(V ) by giving explicit formulas of the Poincare series for the induced modules and the restriction modules. In particular, this provides a uniform formula of the Poincare series for the symmetric invariants in terms of the McKay-Slodowy correspondence. Moreover, we also derive a global version of the Poincare series in terms of Tchebychev polynomials in the sense that one needs only the dimensions of the subgroups and their group-types to completely determine the Poincare series.
引用
收藏
页码:601 / 623
页数:23
相关论文
共 22 条
[1]   Poincare series for tensor invariants and the McKay correspondence [J].
Benkart, Georgia .
ADVANCES IN MATHEMATICS, 2016, 290 :236-259
[2]   Branching law for finite subgroups of SL3 C and McKay correspondence [J].
Butin, Frederic ;
Perets, Gadi S. .
JOURNAL OF GROUP THEORY, 2014, 17 (02) :191-251
[3]   A Beautiful Sine Formula [J].
Damianou, Pantelis A. .
AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (02) :120-135
[4]   Poincare series and monodromy of a two-dimensional quasihomogeneous hypersurface singularity [J].
Ebeling, W .
MANUSCRIPTA MATHEMATICA, 2002, 107 (03) :271-282
[5]   A MCKAY CORRESPONDENCE FOR THE POINCARE SERIES OF SOME FINITE SUBGROUPS OF SL3(C) [J].
Ebeling, Wolfgang .
JOURNAL OF SINGULARITIES, 2018, 18 :397-408
[6]  
Fulton W., 1991, Representation Theory, V129, P551, DOI DOI 10.1007/978-1-4612-0979-9
[7]  
GONZALEZSPRINBERG G, 1983, ANN SCI ECOLE NORM S, V16, P409
[8]  
Hanany A., 2001, JHEP-Journal of High Energy Physics, DOI 10.1088/1126-6708/2001/02/027
[9]   Generalized McKay quivers of rank three [J].
Hu, Xiao Li ;
Jing, Naihuan ;
Cai, Wu Xing .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (07) :1351-1368
[10]   Poincare series, exponents of affine Lie algebras, and McKay-Slodowy correspondence [J].
Jing, Naihuan ;
Wang, Danxia ;
Zhang, Honglian .
JOURNAL OF ALGEBRA, 2020, 546 :135-162