The applications of carbon nanotubes and graphene in advanced rechargeable lithium batteries

被引:133
作者
Yuan, Wenyu [1 ,2 ]
Zhang, Yani [1 ,2 ]
Cheng, Laifei [1 ,2 ]
Wu, Heng [1 ,2 ]
Zheng, Lianxi [3 ]
Zhao, Donglin [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sci & Technol Thermostruct Composite Mat Lab, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[3] Khalifa Univ, Dept Mech Engn, Abu Dhabi 127788, U Arab Emirates
关键词
NITROGEN-DOPED GRAPHENE; HIGH-CAPACITY; IN-SITU; POROUS GRAPHENE; CATHODE MATERIAL; ION BATTERIES; LONG-LIFE; ELECTROCHEMICAL PERFORMANCE; COMPOSITE ELECTRODE; RATE CAPABILITY;
D O I
10.1039/c6ta01546h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Advanced rechargeable lithium batteries are desired energy storage devices for electric vehicles. These batteries require their electrodes to have high electrical and thermal conductivity, an appropriate high specific surface area, an outstanding hierarchical architecture, high thermal and chemical stability and to be relatively low cost and environmentally benign. Carbon nanotubes (CNTs) and graphene are two candidate materials that could meet these requirements, and thus have been widely studied. The present paper reviews the applications of CNTs and graphene in batteries, with an emphasis on the particular roles (such as conductive, active, flexible and supporting roles) they play in advanced lithium batteries. We will summarize the unique advantages of CNTs and graphene in battery applications, update the most recent progress, and compare the prospects and challenges of CNTs and graphene for future full utilization in energy storage applications. The effects and mechanisms of heteroatoms doping, the distribution of pore sizes, different architectures (anchored, sandwich-like and wrapped hybrid architecture) are discussed in detail.
引用
收藏
页码:8932 / 8951
页数:20
相关论文
共 167 条
[1]   Performance degradation of high-power lithium-ion cells- Electrochemistry of harvested electrodes [J].
Abraham, D. P. ;
Knuth, J. L. ;
Dees, D. W. ;
Bloom, I. ;
Christophersen, J. P. .
JOURNAL OF POWER SOURCES, 2007, 170 (02) :465-475
[2]   Temperature dependence of capacity and impedance data from fresh and aged high-power lithium-ion cells [J].
Abraham, D. P. ;
Reynolds, E. M. ;
Schultz, P. L. ;
Jansen, A. N. ;
Dees, D. W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (08) :A1610-A1616
[3]  
[Anonymous], ANGEW CHEM INT ED, DOI DOI 10.1002/ANGE.201501398
[4]   Charge transfer kinetics at the solid-solid interface in porous electrodes [J].
Bai, Peng ;
Bazant, Martin Z. .
NATURE COMMUNICATIONS, 2014, 5
[5]   Advanced carbon aerogels for energy applications [J].
Biener, Juergen ;
Stadermann, Michael ;
Suss, Matthew ;
Worsley, Marcus A. ;
Biener, Monika M. ;
Rose, Klint A. ;
Baumann, Theodore F. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :656-667
[6]   Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J].
Bonaccorso, Francesco ;
Colombo, Luigi ;
Yu, Guihua ;
Stoller, Meryl ;
Tozzini, Valentina ;
Ferrari, Andrea C. ;
Ruoff, Rodney S. ;
Pellegrini, Vittorio .
SCIENCE, 2015, 347 (6217)
[7]   Sn- and SnO2-graphene flexible foams suitable as binder-free anodes for lithium ion batteries [J].
Botas, Cristina ;
Carriazo, Daniel ;
Singh, Gurpreet ;
Rojo, Teofilo .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (25) :13402-13410
[8]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[9]   Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries [J].
Cao, Yuliang ;
Li, Xiaolin ;
Aksay, Ilhan A. ;
Lemmon, John ;
Nie, Zimin ;
Yang, Zhenguo ;
Liu, Jun .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (17) :7660-7665
[10]   Solution Assembled Single-Walled Carbon Nanotube Foams: Superior Performance in Supercapacitors, Lithium-Ion, and Lithium-Air Batteries [J].
Carter, Rachel ;
Oakes, Landon ;
Cohn, Adam P. ;
Holzgrafe, Jeffrey ;
Zarick, Holly F. ;
Chatterjee, Shahana ;
Bardhan, Rizia ;
Pint, Cary L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (35) :20137-20151