Nanocrystalline Cellulose Supported MnO2 Composite Materials for High-Performance Lithium-Ion Batteries

被引:9
作者
Tran, Quang Nhat [1 ]
Vo, Thuan Ngoc [1 ]
Kim, Il Tae [1 ]
Kim, Ji Hyeon [1 ]
Lee, Dal Ho [2 ]
Park, Sang Joon [1 ]
机构
[1] Gachon Univ, Dept Chem & Biol Engn, Seongnam 13120, Gyeonggi Do, South Korea
[2] Gachon Univ, Dept Elect Engn, Seongnam 13120, Gyeonggi Do, South Korea
关键词
manganese dioxide; nanocrystalline cellulose; lithium-ion batteries; nanocomposite; discharge capacity; REDUCED GRAPHENE OXIDE; ANODE MATERIALS; NEGATIVE-ELECTRODE; GENERAL-SYNTHESIS; FACILE SYNTHESIS; BINDER-FREE; NANOTUBES; HYBRID; MN3O4; NANOPARTICLES;
D O I
10.3390/ma14216619
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rate capability and poor cycling stability of lithium-ion batteries (LIBs) are predominantly caused by the large volume expansion upon cycling and poor electrical conductivity of manganese dioxide (MnO2), which also exhibits the highest theoretical capacity among manganese oxides. In this study, a nanocomposite of nanosized MnO2 and pyrolyzed nanocrystalline cellulose (CNC) was prepared with high electrical conductivity to enhance the electrochemical performance of LIBs. The nanocomposite electrode showed an initial discharge capacity of 1302 mAh g(-1) at 100 mA g(-1) and exhibited a high discharge capacity of 305 mAh g(-1) after 1000 cycles. Moreover, the MnO2-CNC nanocomposite delivered a good rate capability of up to 10 A g(-1) and accommodated the large volume change upon repeated cycling tests.
引用
收藏
页数:12
相关论文
共 50 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Reduced graphene oxide decorated with SnO2 nanoparticles as negative electrode for lithium ion capacitors [J].
Arnaiz, Maria ;
Botas, Cristina ;
Carriazo, Daniel ;
Mysyk, Roman ;
Mijangos, Federico ;
Rojo, Teofilo ;
Ajuria, Jon ;
Goikolea, Eider .
ELECTROCHIMICA ACTA, 2018, 284 :542-550
[3]   Manganese Oxide/Carbon Yolk-Shell Nanorod Anodes for High Capacity Lithium Batteries [J].
Cai, Zhengyang ;
Xu, Lin ;
Yan, Mengyu ;
Han, Chunhua ;
He, Liang ;
Hercule, Kalele Mulonda ;
Niu, Chaojiang ;
Yuan, Zefan ;
Xu, Wangwang ;
Qu, Longbing ;
Zhao, Kangning ;
Mai, Liqiang .
NANO LETTERS, 2015, 15 (01) :738-744
[4]   A core-shell porous MnO2/Carbon nanosphere composite as the anode of lithium-ion batteries [J].
Cao, Zhiguang ;
Yang, Yuebei ;
Qin, Junling ;
Su, Zixue .
JOURNAL OF POWER SOURCES, 2021, 491
[5]   Graphene supported α-MnO2 nanocomposite cathodes for lithium ion batteries [J].
Cetinkaya, Tugrul ;
Tokur, Mahmud ;
Ozcan, Seyma ;
Uysal, Mehmet ;
Akbulut, Hatem .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (16) :6945-6953
[6]   Electrochemical properties of MnO2 nanorods as anode materials for lithium ion batteries [J].
Chen, Jingbo ;
Wang, Yaowu ;
He, Xiangming ;
Xu, Shengming ;
Fang, Mou ;
Zhao, Xiao ;
Shang, Yuming .
ELECTROCHIMICA ACTA, 2014, 142 :152-156
[7]   Titanium-Based Anode Materials for Safe Lithium-Ion Batteries [J].
Chen, Zonghai ;
Belharouak, Ilias ;
Sun, Y-K ;
Amine, Khalil .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) :959-969
[8]   A review of application of carbon nanotubes for lithium ion battery anode material [J].
de las Casas, Charles ;
Li, Wenzhi .
JOURNAL OF POWER SOURCES, 2012, 208 :74-85
[9]   Enhancing Specific Capacitance and Cyclic Stability through Incorporation of MnO2 into Bacterial Nanocellulose/PPy•CuCl2 Flexible Electrodes [J].
Dias, Gabriella M., V ;
Muller, Daliana ;
Wesling, Bruno N. ;
Bernardes, Joseane C. ;
Hotza, Dachamir ;
Rambo, Carlos R. .
ENERGY TECHNOLOGY, 2019, 7 (09)
[10]   Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries [J].
Gao, Feng ;
Qin, Shi-hui ;
Zang, Yun-hao ;
Gu, Jian-feng ;
Qu, Jiang-ying .
NEW CARBON MATERIALS, 2020, 35 (02) :121-130