Requirements for a global lidar system: spaceborne lidar with wall-to-wall coverage

被引:41
作者
Hancock, Steven [1 ]
McGrath, Ciara [2 ]
Lowe, Christopher [2 ]
Davenport, Ian [1 ]
Woodhouse, Iain [1 ]
机构
[1] Univ Edinburgh, Sch Geosci, Crew Bldg, Edinburgh EH9 3FF, Midlothian, Scotland
[2] Univ Strathclyde, Dept Elect & Elect Engn, Appl Space Technol Lab ApSTL, 204 George St, Glasgow G1 1XW, Lanark, Scotland
关键词
lidar; satellite; global; continuous coverage; vegetation mapping; FOREST; SIMULATION; HEIGHT; GLAS; LAND;
D O I
10.1098/rsos.211166
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lidar is the optimum technology for measuring bare-Earth elevation beneath, and the structure of, vegetation. Consequently, airborne laser scanning (ALS) is widely employed for use in a range of applications. However, ALS is not available globally nor frequently updated due to its high cost per unit area. Spaceborne lidar can map globally but energy requirements limit existing spaceborne lidars to sparse sampling missions, unsuitable for many common ALS applications. This paper derives the equations to calculate the coverage a lidar satellite could achieve for a given set of characteristics (released open-source), then uses a cloud map to determine the number of satellites needed to achieve continuous, global coverage within a certain time-frame. Using the characteristics of existing in-orbit technology, a single lidar satellite could have a continuous swathe width of 300 m when producing a 30 m resolution map. Consequently, 12 satellites would be needed to produce a continuous map every 5 years, increasing to 418 satellites for 5 m resolution. Building 12 of the currently in-orbit lidar systems is likely to be prohibitively expensive and so the potential of technological developments to lower the cost of a global lidar system (GLS) are discussed. Once these technologies achieve a sufficient readiness level, a GLS could be cost-effectively realized.
引用
收藏
页数:15
相关论文
共 63 条
[1]  
Abshire J.B., 2020, P 51 LUNAR PLANETARY, P1966
[2]   Assimilation of atmospheric infrasound data to constrain tropospheric and stratospheric winds [J].
Amezcua, Javier ;
Nasholm, Sven Peter ;
Blixt, Erik Marten ;
Charlton-Perez, Andrew J. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2020, 146 (731) :2634-2653
[3]   Towards National Archaeological Mapping. Assessing Source Data and MethodologyA Case Study from Scotland [J].
Banaszek, Lukasz ;
Cowley, Dave C. ;
Middleton, Mike .
GEOSCIENCES, 2018, 8 (08)
[4]  
BLAIR JB, 2001, INT ARCH PHOTOGRAMME, P22
[5]  
ClydeSpace, 2020, EP 6U DAT
[6]   Beyond 'flood hotspots': Modelling emergency service accessibility during flooding in York, UK [J].
Coles, Daniel ;
Yu, Dapeng ;
Wilby, Robert L. ;
Green, Daniel ;
Herring, Zara .
JOURNAL OF HYDROLOGY, 2017, 546 :419-436
[7]   Doses of Neighborhood Nature: The Benefits for Mental Health of Living with Nature [J].
Cox, Daniel T. C. ;
Shanahan, Danielle F. ;
Hudson, Hannah L. ;
Plummer, Kate E. ;
Siriwardena, Gavin M. ;
Fuller, Richard A. ;
Anderson, Karen ;
Hancock, Steven ;
Gaston, Kevin J. .
BIOSCIENCE, 2017, 67 (02) :147-155
[8]  
Decker BL., 1986, WORLD GEODETIC SYSTE
[9]   The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth's forests and topography [J].
Dubayah, Ralph ;
Blair, James Bryan ;
Goetz, Scott ;
Fatoyinbo, Lola ;
Hansen, Matthew ;
Healey, Sean ;
Hofton, Michelle ;
Hurtt, George ;
Kellner, James ;
Luthcke, Scott ;
Armston, John ;
Tang, Hao ;
Duncanson, Laura ;
Hancock, Steven ;
Jantz, Patrick ;
Marselis, Suzanne ;
Patterson, Paul L. ;
Qi, Wenlu ;
Silva, Carlos .
SCIENCE OF REMOTE SENSING, 2020, 1
[10]   PRELIMINARY STUDIES FOR A VEGETATION LADAR/LIDAR SPACE MISSION IN FRANCE [J].
Durrieu, S. ;
Cherchali, S. ;
Costeraste, J. ;
Mondin, L. ;
Debise, H. ;
Chazette, P. ;
Dauzat, J. ;
Gastellu-Etchegorry, J-P ;
Baghdadi, N. ;
Pelissier, R. .
2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, :4332-4335