The thermistor problem with Robin boundary condition

被引:2
作者
Cimatti, Giovanni [1 ]
机构
[1] Dept Math, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
来源
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA | 2016年 / 135卷
关键词
Thermistor problem; Robin boundary condition; existence; uniqueness of solutions; EXISTENCE;
D O I
10.4171/RSMUP/135-10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the thermistor problem with Robin boundary condition for the temperature. A theorem of existence is proved using the compensated compactness method. For the one-dimensional case a result of non-existence and non-uniqueness is also given.
引用
收藏
页码:175 / 193
页数:19
相关论文
共 12 条
[1]   EXISTENCE RESULTS FOR A NONLINEAR ELLIPTIC SYSTEM MODELING A TEMPERATURE-DEPENDENT ELECTRICAL RESISTOR [J].
CIMATTI, G ;
PRODI, G .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 152 :227-236
[2]   Remarks on the existence, uniqueness and semi-explicit solvability of systems of autonomous partial differential equations in divergence form with constant boundary conditions [J].
Cimatti, Giovanni .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 :481-495
[3]   TEMPERATURE SURGES IN CURRENT-LIMITING CIRCUIT DEVICES [J].
FOWLER, AC ;
FRIGAARD, I ;
HOWISON, SD .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (04) :998-1011
[4]  
HOWISON S. D., 2005, CAMBRIDGE TEXTS APPL
[5]   STATIONARY SOLUTIONS TO THE THERMISTOR PROBLEM [J].
HOWISON, SD ;
RODRIGUES, JF ;
SHILLOR, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 174 (02) :573-588
[6]  
Hyde F.J., 1971, THERMISTORS
[7]  
KINDERLEHERER D., 1980, PURE APPL MATH, V88
[8]  
Lacey A A., 1995, Eur. J. Appl. Math, V6, P201, DOI [10.1017/S0956792500001807, DOI 10.1017/S0956792500001807]
[9]  
NECAS J., 1967, METHODES DIRECTES TH
[10]  
PROTTER M. H., 1967, MAXIMUM PRINCIPLE DI