On quasi-Monte Carlo integrations

被引:209
作者
Sobol, IM [1 ]
机构
[1] Russian Acad Sci, Inst Math Modelling, Moscow 125047, Russia
关键词
Monte Carlo method; quasi-Monte Carlo method; uniformly distributed sequences; low-discrepancy sequences; numerical integration;
D O I
10.1016/S0378-4754(98)00096-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Relations between Monte Carlo and quasi-Monte Carlo methods are analysed from both theoretical and practical points of view with special emphasis on high-dimensional integration. (C) 1998 IMACS/Elsevier Science B.V.
引用
收藏
页码:103 / 112
页数:10
相关论文
共 16 条
[1]  
Bratley P., 1992, ACM Transactions on Modeling and Computer Simulation, V2, P195, DOI 10.1145/146382.146385
[2]   MONTE-CARLO ESTIMATION OF INTEGRALS OCCURRING IN THE NON-LINEAR THEORY OF GRAVITATIONAL-INSTABILITY [J].
DOROSHKEVICH, AG ;
SOBOL, IM .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1987, 27 (9-10) :200-202
[3]  
Drmota M., 1997, LECT NOTES MATH, V1651
[4]   DISCREPANCY OF SEQUENCES ASSOCIATED WITH A NUMERATION SYSTEM (IN S-DIMENSION) [J].
FAURE, H .
ACTA ARITHMETICA, 1982, 41 (04) :337-351
[5]  
Halton J.H., 1960, NUMER MATH, V2, P84, DOI DOI 10.1007/BF01386213
[6]  
NIEDERREITER H, 1995, ACTA ARITH, V72, P281
[7]  
NIEDRREITER H, 1992, RANDOM NUMBER GENERA
[8]   FASTER VALUATION OF FINANCIAL DERIVATIVES [J].
PASKOV, SH ;
TRAUB, JF .
JOURNAL OF PORTFOLIO MANAGEMENT, 1995, 22 (01) :113-&
[9]  
Radovi I., 1996, MONTE CARLO METHODS, V2, P1, DOI [10.1515/mcma.1996.2.1.1., DOI 10.1515/MCMA.1996.2.1.1]
[10]  
Sobol I. M., 1967, USSR COMP MATH MATH, V7, P784, DOI DOI 10.1016/0041-5553(67)90144-9