Statistical time-reversal symmetry and its physical applications

被引:6
作者
Dubkov, Alexander A. [1 ]
机构
[1] Lobachevsky State Univ, Radiophys Dept, Nizhnii Novgorod 603950, Russia
基金
俄罗斯基础研究基金会;
关键词
Time-reversal symmetry; Cumulant functions; Markovian process; Langevin equation; Fluctuation-dissipation theorems; Oscillator with fluctuating frequency; FLUCTUATION-DISSIPATION THEOREM; COSTA; IVL ET-AL; BROWNIAN-MOTION; FAST SUPERDIFFUSION; GREEN NOISE; MOMENT INSTABILITIES; STOCHASTIC RESONANCE; HARMONIC OSCILLATOR; SYSTEMS; FAILS;
D O I
10.1016/j.chemphys.2010.05.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Some important consequences of the time-reversal symmetry of a stationary random process are highlighted. We discuss a connection between fluctuation-dissipation theorems and model macroscopic Langevin equations. Based on the property of statistical time reversibility we obtain the exact result for steady-state distribution of classical harmonic oscillator with fluctuating frequency. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:364 / 369
页数:6
相关论文
共 56 条
[1]  
[Anonymous], 1980, STAT PHYS, DOI DOI 10.1016/C2009-0-24487-4
[2]  
[Anonymous], 1990, The Nonequilibrium Statistical Mechanics of Open and Closed Systems
[3]  
[Anonymous], 1978, A Cumulant Analysis of Random Non-Gaussian Processes and Their Transformations
[4]   Comment on "The Fluctuation-Dissipation Theorem fails for fast superdiffusion" by IVL!Costa et al. [J].
Bao, JD .
EUROPHYSICS LETTERS, 2004, 67 (06) :1050-1051
[5]   Ballistic diffusion induced by a thermal broadband noise [J].
Bao, JD ;
Zhuo, YZ .
PHYSICAL REVIEW LETTERS, 2003, 91 (13) :138104-138104
[6]   Numerical integration of a non-Markovian Langevin equation with a thermal band-passing noise [J].
Bao, JD .
JOURNAL OF STATISTICAL PHYSICS, 2004, 114 (1-2) :503-513
[7]   Non-Markovian Brownian dynamics and nonergodicity -: art. no. 061107 [J].
Bao, JD ;
Hänggi, P ;
Zhuo, YZ .
PHYSICAL REVIEW E, 2005, 72 (06)
[8]   STABILITY AND CONTROL OF STOCHASTIC-SYSTEMS WITH WIDEBAND NOISE DISTURBANCES .1. [J].
BLANKENSHIP, G ;
PAPANICOLAOU, GC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 34 (03) :437-476
[9]   NON-LINEAR FLUCTUATION-DISSIPATION RELATIONS AND STOCHASTIC-MODELS IN NON-EQUILIBRIUM THERMODYNAMICS .1. GENERALIZED FLUCTUATION-DISSIPATION THEOREM [J].
BOCHKOV, GN ;
KUZOVLEV, YE .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1981, 106 (03) :443-479
[10]   ENERGETIC STABILITY OF HARMONIC OSCILLATOR WITH RANDOM PARAMETRIC DRIVING [J].
BOURRET, R .
PHYSICA, 1971, 54 (04) :623-&