Realizing repeated quantum error correction in a distance-three surface code

被引:437
作者
Krinner, Sebastian [1 ]
Lacroix, Nathan [1 ]
Remm, Ants [1 ]
Di Paolo, Agustin [2 ,3 ]
Genois, Elie [2 ,3 ]
Leroux, Catherine [2 ,3 ]
Hellings, Christoph [1 ]
Lazar, Stefania [1 ]
Swiadek, Francois [1 ]
Herrmann, Johannes [1 ]
Norris, Graham J. [1 ]
Andersen, Christian Kraglund [1 ,8 ,9 ]
Mueller, Markus [4 ,5 ]
Blais, Alexandre [2 ,3 ,6 ]
Eichler, Christopher [1 ]
Wallraff, Andreas [1 ,7 ]
机构
[1] Swiss Fed Inst Technol, Dept Phys, Zurich, Switzerland
[2] Univ Sherbrooke, Inst Quant, Sherbrooke, PQ, Canada
[3] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ, Canada
[4] Rhein Westfal TH Aachen, Inst Quantum Informat, Aachen, Germany
[5] Forschungszentrum Julich, Peter Grunberg Inst, Theoret Nanoelect, Julich, Germany
[6] Canadian Inst Adv Res, Toronto, ON, Canada
[7] Swiss Fed Inst Technol, Quantum Ctr, Zurich, Switzerland
[8] Delft Univ Technol, QuTech, Delft, Netherlands
[9] Delft Univ Technol, Kavli Inst Nanosci, Delft, Netherlands
基金
瑞士国家科学基金会; 欧盟地平线“2020”; 加拿大自然科学与工程研究理事会;
关键词
COMPUTATION; QUBIT;
D O I
10.1038/s41586-022-04566-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum computers hold the promise of solving computational problems that are intractable using conventional methods(1). For fault-tolerant operation, quantum computers must correct errors occurring owing to unavoidable decoherence and limited control accuracy(2). Here we demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors(3-6). Using 17 physical qubits in a superconducting circuit, we encode quantum information in a distance-three logical qubit, building on recent distance-two error-detection experiments(7-9). In an error-correction cycle taking only 1.1 mu s, we demonstrate the preservation of four cardinal states of the logical qubit. Repeatedly executing the cycle, we measure and decode both bit-flip and phase-flip error syndromes using a minimum-weight perfect-matching algorithm in an error-model-free approach and apply corrections in post-processing. We find a low logical error probability of 3% per cycle when rejecting experimental runs in which leakage is detected. The measured characteristics of our device agree well with a numerical model. Our demonstration of repeated, fast and high-performance quantum error-correction cycles, together with recent advances in ion traps(10), support our understanding that fault-tolerant quantum computation will be practically realizable.
引用
收藏
页码:669 / +
页数:8
相关论文
共 61 条
[41]   Quantum Computing in the NISQ era and beyond [J].
Preskill, John .
QUANTUM, 2018, 2
[42]   Fault-tolerant quantum computation with high threshold in two dimensions [J].
Raussendorf, Robert ;
Harrington, Jim .
PHYSICAL REVIEW LETTERS, 2007, 98 (19)
[43]   Realization of Real-Time Fault-Tolerant Quantum Error Correction [J].
Ryan-Anderson, C. ;
Bohnet, J. G. ;
Lee, K. ;
Gresh, D. ;
Hankin, A. ;
Gaebler, J. P. ;
Francois, D. ;
Chernoguzov, A. ;
Lucchetti, D. ;
Brown, N. C. ;
Gatterman, T. M. ;
Halit, S. K. ;
Gilmore, K. ;
Gerber, J. A. ;
Neyenhuis, B. ;
Hayes, D. ;
Stutz, R. P. .
PHYSICAL REVIEW X, 2021, 11 (04)
[44]   Measurement-Induced State Transitions in a Superconducting Qubit: Beyond the Rotating Wave Approximation [J].
Sank, Daniel ;
Chen, Zijun ;
Khezri, Mostafa ;
Kelly, J. ;
Barends, R. ;
Campbell, B. ;
Chen, Y. ;
Chiaro, B. ;
Dunsworth, A. ;
Fowler, A. ;
Jeffrey, E. ;
Lucero, E. ;
Megrant, A. ;
Mutus, J. ;
Neeley, M. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Vainsencher, A. ;
White, T. ;
Wenner, J. ;
Korotkov, Alexander N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (19)
[45]   Experimental Repetitive Quantum Error Correction [J].
Schindler, Philipp ;
Barreiro, Julio T. ;
Monz, Thomas ;
Nebendahl, Volckmar ;
Nigg, Daniel ;
Chwalla, Michael ;
Hennrich, Markus ;
Blatt, Rainer .
SCIENCE, 2011, 332 (6033) :1059-1061
[46]   Fault-tolerant quantum computation [J].
Shor, PW .
37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, :56-65
[47]   Adaptive Weight Estimator for Quantum Error Correction in a Time-Dependent Environment [J].
Spitz, Stephen T. ;
Tarasinski, Brian ;
Beenakker, Carlo W. J. ;
O'Brien, Thomas E. .
ADVANCED QUANTUM TECHNOLOGIES, 2018, 1 (01)
[48]   Fault-tolerant thresholds for quantum error correction with the surface code [J].
Stephens, Ashley M. .
PHYSICAL REVIEW A, 2014, 89 (02)
[49]   First-order sideband transitions with flux-driven asymmetric transmon qubits [J].
Strand, J. D. ;
Ware, Matthew ;
Beaudoin, Felix ;
Ohki, T. A. ;
Johnson, B. R. ;
Blais, Alexandre ;
Plourde, B. L. T. .
PHYSICAL REVIEW B, 2013, 87 (22)
[50]   Quantum logic gates for coupled superconducting phase qubits [J].
Strauch, FW ;
Johnson, PR ;
Dragt, AJ ;
Lobb, CJ ;
Anderson, JR ;
Wellstood, FC .
PHYSICAL REVIEW LETTERS, 2003, 91 (16)