Realizing repeated quantum error correction in a distance-three surface code

被引:437
作者
Krinner, Sebastian [1 ]
Lacroix, Nathan [1 ]
Remm, Ants [1 ]
Di Paolo, Agustin [2 ,3 ]
Genois, Elie [2 ,3 ]
Leroux, Catherine [2 ,3 ]
Hellings, Christoph [1 ]
Lazar, Stefania [1 ]
Swiadek, Francois [1 ]
Herrmann, Johannes [1 ]
Norris, Graham J. [1 ]
Andersen, Christian Kraglund [1 ,8 ,9 ]
Mueller, Markus [4 ,5 ]
Blais, Alexandre [2 ,3 ,6 ]
Eichler, Christopher [1 ]
Wallraff, Andreas [1 ,7 ]
机构
[1] Swiss Fed Inst Technol, Dept Phys, Zurich, Switzerland
[2] Univ Sherbrooke, Inst Quant, Sherbrooke, PQ, Canada
[3] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ, Canada
[4] Rhein Westfal TH Aachen, Inst Quantum Informat, Aachen, Germany
[5] Forschungszentrum Julich, Peter Grunberg Inst, Theoret Nanoelect, Julich, Germany
[6] Canadian Inst Adv Res, Toronto, ON, Canada
[7] Swiss Fed Inst Technol, Quantum Ctr, Zurich, Switzerland
[8] Delft Univ Technol, QuTech, Delft, Netherlands
[9] Delft Univ Technol, Kavli Inst Nanosci, Delft, Netherlands
基金
瑞士国家科学基金会; 欧盟地平线“2020”; 加拿大自然科学与工程研究理事会;
关键词
COMPUTATION; QUBIT;
D O I
10.1038/s41586-022-04566-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum computers hold the promise of solving computational problems that are intractable using conventional methods(1). For fault-tolerant operation, quantum computers must correct errors occurring owing to unavoidable decoherence and limited control accuracy(2). Here we demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors(3-6). Using 17 physical qubits in a superconducting circuit, we encode quantum information in a distance-three logical qubit, building on recent distance-two error-detection experiments(7-9). In an error-correction cycle taking only 1.1 mu s, we demonstrate the preservation of four cardinal states of the logical qubit. Repeatedly executing the cycle, we measure and decode both bit-flip and phase-flip error syndromes using a minimum-weight perfect-matching algorithm in an error-model-free approach and apply corrections in post-processing. We find a low logical error probability of 3% per cycle when rejecting experimental runs in which leakage is detected. The measured characteristics of our device agree well with a numerical model. Our demonstration of repeated, fast and high-performance quantum error-correction cycles, together with recent advances in ion traps(10), support our understanding that fault-tolerant quantum computation will be practically realizable.
引用
收藏
页码:669 / +
页数:8
相关论文
共 61 条
[1]  
Abobeih M. H., PREPRINT
[2]  
Aliferis P, 2007, QUANTUM INF COMPUT, V7, P139
[3]   Repeated quantum error detection in a surface code [J].
Andersen, Christian Kraglund ;
Remm, Ants ;
Lazar, Stefania ;
Krinner, Sebastian ;
Lacroix, Nathan ;
Norris, Graham J. ;
Gabureac, Mihai ;
Eichler, Christopher ;
Wallraff, Andreas .
NATURE PHYSICS, 2020, 16 (08) :875-+
[4]   Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits [J].
Andersen, Christian Kraglund ;
Remrm, Ants ;
Lazar, Stefania ;
Krinner, Sebastian ;
Heinsoo, Johannes ;
Besse, Jean-Claude ;
Gabureac, Mihai ;
Wallraff, Andreas ;
Eichler, Christopher .
NPJ QUANTUM INFORMATION, 2019, 5
[5]   Focus beyond Quadratic Speedups for Error-Corrected Quantum Advantage [J].
Babbush, Ryan ;
McClean, Jarrod R. ;
Newman, Michael ;
Gidney, Craig ;
Boixo, Sergio ;
Neven, Hartmut .
PRX QUANTUM, 2021, 2 (01)
[6]   Quantum measurements and gates by code deformation [J].
Bombin, H. ;
Martin-Delgado, M. A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (09)
[7]   Optimal resources for topological two-dimensional stabilizer codes: Comparative study [J].
Bombin, H. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW A, 2007, 76 (01)
[8]  
Bravyi S. B., 1998, PREPRINT, DOI DOI 10.1103/PhysRevA.87.032310
[9]   Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements [J].
Bultink, C. C. ;
O'Brien, T. E. ;
Vollmer, R. ;
Muthusubramanian, N. ;
Beekman, M. W. ;
Rol, M. A. ;
Fu, X. ;
Tarasinski, B. ;
Ostroukh, V ;
Varbanov, B. ;
Bruno, A. ;
DiCarlo, L. .
SCIENCE ADVANCES, 2020, 6 (12)
[10]   Quantum error correction of a qubit encoded in grid states of an oscillator [J].
Campagne-Ibarcq, P. ;
Eickbusch, A. ;
Touzard, S. ;
Zalys-Geller, E. ;
Frattini, N. E. ;
Sivak, V. V. ;
Reinhold, P. ;
Puri, S. ;
Shankar, S. ;
Schoelkopf, R. J. ;
Frunzio, L. ;
Mirrahimi, M. ;
Devoret, M. H. .
NATURE, 2020, 584 (7821) :368-+