Sparse model selection via integral terms

被引:134
作者
Schaeffer, Hayden [1 ]
McCalla, Scott G.
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
NONLINEAR DYNAMICAL-SYSTEMS; EQUATIONS;
D O I
10.1103/PhysRevE.96.023302
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Model selection and parameter estimation are important for the effective integration of experimental data, scientific theory, and precise simulations. In this work, we develop a learning approach for the selection and identification of a dynamical system directly from noisy data. The learning is performed by extracting a small subset of important features from an overdetermined set of possible features using a nonconvex sparse regression model. The sparse regression model is constructed to fit the noisy data to the trajectory of the dynamical system while using the smallest number of active terms. Computational experiments detail the model's stability, robustness to noise, and recovery accuracy. Examples include nonlinear equations, population dynamics, chaotic systems, and fast- slow systems.
引用
收藏
页数:7
相关论文
共 20 条
[1]   Automated reverse engineering of nonlinear dynamical systems [J].
Bongard, Josh ;
Lipson, Hod .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (24) :9943-9948
[2]   Discovering governing equations from data by sparse identification of nonlinear dynamical systems [J].
Brunton, Steven L. ;
Proctor, Joshua L. ;
Kutz, J. Nathan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (15) :3932-3937
[3]   PDES WITH COMPRESSED SOLUTIONS [J].
Caflisch, Russel E. ;
Osher, Stanley J. ;
Schaeffer, Hayden ;
Tran, Giang .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (08) :2155-2176
[4]   Sparsity and incoherence in compressive sampling [J].
Candes, Emmanuel ;
Romberg, Justin .
INVERSE PROBLEMS, 2007, 23 (03) :969-985
[5]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[6]   Proximal Splitting Methods in Signal Processing [J].
Combettes, Patrick L. ;
Pesquet, Jean-Christophe .
FIXED-POINT ALGORITHMS FOR INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2011, 49 :185-+
[7]   Automated adaptive inference of phenomenological dynamical models [J].
Daniels, Bryan C. ;
Nemenman, Ilya .
NATURE COMMUNICATIONS, 2015, 6
[8]   DE-NOISING BY SOFT-THRESHOLDING [J].
DONOHO, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) :613-627
[9]   AN L1 PENALTY METHOD FOR GENERAL OBSTACLE PROBLEMS [J].
Giang Tran ;
Schaeffer, Hayden ;
Feldman, William M. ;
Osher, Stanley J. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (04) :1424-1444
[10]   Sparse plus low-energy decomposition for viscous conservation laws [J].
Hou, Thomas Y. ;
Li, Qin ;
Schaeffer, Hayde .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 288 :150-166