Compatibility of jump Cauchy data for non-isentropic Euler equations

被引:4
作者
Li, Dening [1 ]
机构
[1] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
关键词
Compatibility; Cauchy problem; Euler systems; Shock; Rarefaction wave; Contact discontinuity; BOUNDARY-VALUE-PROBLEMS; HYPERBOLIC SYSTEMS; CONSERVATION-LAWS; VORTEX SHEETS; RAREFACTION; WAVES; SPACE;
D O I
10.1016/j.jmaa.2014.12.053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper studies the compatibility of the Cauchy data which have a jump discontinuity for the non-isentropic 3-d Euler system. For a complete range of combinations of waves including shocks, rarefaction waves, and contact discontinuity, it is shown that the data is compatible of infinite order if the corresponding 1-d Riemann problem admits such a solution. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:565 / 587
页数:23
相关论文
共 18 条
[2]   DOUBLE SHOCK FRONTS FOR HYPERBOLIC SYSTEMS OF CONSERVATION-LAWS IN MULTIDIMENSIONAL SPACE [J].
BUI, AT ;
LI, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 316 (01) :233-250
[3]   Cauchy problem with general discontinuous initial data along a smooth curve for 2-d Euler system [J].
Chen, Shuxing ;
Li, Dening .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (06) :1939-1988
[4]  
Coulombel J.F., 2004, ANN U FERRARA, V50, P79, DOI [10.1007/BF02825344, DOI 10.1007/BF02825344]
[5]  
Coulombel JF, 2008, ANN SCI ECOLE NORM S, V41, P85
[6]  
COURANT R, 1949, SUPERSONIC FLOW SHOC
[7]   THE INVERSE FUNCTION THEOREM OF NASH AND MOSER [J].
HAMILTON, RS .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (01) :65-222
[8]   HYPERBOLIC SYSTEMS OF CONSERVATION LAWS .2. [J].
LAX, PD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1957, 10 (04) :537-566
[9]   RAREFACTION AND SHOCK-WAVES FOR MULTIDIMENSIONAL HYPERBOLIC CONSERVATION-LAWS [J].
LI, DN .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (2-3) :425-450
[10]  
Li T., 1985, BOUND VALUE PROBL, V5