Symbol division multiplexing in optical fiber communication systems

被引:5
作者
Dong, Ze [1 ]
Yu, Jianjun [2 ]
Chen, Yifan [3 ]
Li, Fan [3 ]
Xin, Xiangjun [1 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Fudan Univ, Key Lab Informat Sci Electromagnet Waves MoE, Shanghai 200433, Peoples R China
[3] Sun Yat Sen Univ, Guangdong Prov Key Lab Optoelect Informat Proc Ch, Sch Elect & Informat Technol, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSMISSION; MODULATION; QAM;
D O I
10.1364/OE.452149
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Modern emerging data services and applications have put forward an ever-increasing bandwidth requirement for fiber-optic communication channels. To this end, we propose a novel symbol division multiplexing technology (SDM) by multiplexing/de-multiplexing of multiple quadrature amplitude modulation (QAM) symbols onto one complex constellation point. In our SDM scheme, every 7-bit 128QAM symbol is multiplexed per complex valued signal sequentially according to the optimal many-to-one mapping law, forming a 32QAM in the constellation and achieving an extra 40% gain for symbol capacity in an optical discrete multi-tone transmission system. The experiments prove that the SDM-32QAM successfully mitigates the signal impairments induced by fiber chromatic dispersion and Kerr nonlinearity, thus leading to 3.91-dB superior receiver power sensitivity and 2-dB enhancement of systematic tolerance to fiber nonlinear effect. The results highly motivate a fundamental paradigm in multiplexing techniques for optical fiber communication systems. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:14998 / 15007
页数:10
相关论文
共 36 条
[1]  
[Anonymous], 1968, Information Theory and Reliable Communications
[2]   Probabilistic Shaping 44QAM Based on Many-to-One Mapping in DMT-WDM-PON [J].
Cao, Zhenqi ;
Chen, Yifan ;
Zhao, Xue ;
Zhou, Lin ;
Dong, Ze .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2020, 32 (11) :639-642
[3]  
Cho J., 2021, P OPTICAL FIBER COMM, P1
[4]   Modeling and verification of FEC performance for optical transmission systems using a proposed uniformly quantized symbol error probability model [J].
Choi, E ;
Jang, H ;
Lee, J ;
Lee, H ;
Hwang, S ;
Oh, YJ ;
Lee, I ;
Jeong, J .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (03) :1100-1104
[5]   Interchannel nonlinearities in coherent polarization-division-multiplexed quadrature-phase-shift-keying systems [J].
Xie, Chongjin .
IEEE Photonics Technology Letters, 2009, 21 (05) :274-276
[6]   100 Gb/s Optical Access Based on Optical Orthogonal Frequency-Division Multiplexing [J].
Cvijetic, Neda ;
Qian, Dayou ;
Hu, Junqiang .
IEEE COMMUNICATIONS MAGAZINE, 2010, 48 (07) :70-77
[7]   Scalable WDM phase regeneration in a single phase-sensitive amplifier through optical time lenses [J].
Guan, Pengyu ;
Da Ros, Francesco ;
Lillieholm, Mads ;
Kjoller, Niels-Kristian ;
Hu, Hao ;
Roge, Kasper Meldgaard ;
Galili, Michael ;
Morioka, Toshio ;
Oxenlowe, Leif Katsuo .
NATURE COMMUNICATIONS, 2018, 9
[8]   LDPC-Coded Probabilistic Shaping PAM4 Based on Many-to-One Mapping in WDM-PON [J].
He, Hailian ;
Chen, Yifan ;
Xiao, Qinghua ;
Zhou, Lin ;
Dong, Ze .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (15) :3918-3925
[9]  
Hillerkuss D, 2011, NAT PHOTONICS, V5, P364, DOI [10.1038/nphoton.2011.74, 10.1038/NPHOTON.2011.74]
[10]   Ultra-dense spatial-division-multiplexed optical fiber transmission over 6-mode 19-core fibers [J].
Igarashi, Koji ;
Soma, Daiki ;
Wakayama, Yuta ;
Takeshima, Koki ;
Kawaguchi, Yu ;
Yoshikane, Noboru ;
Tsuritani, Takehiro ;
Morita, Itsuro ;
Suzuki, Masatoshi .
OPTICS EXPRESS, 2016, 24 (10) :10213-10231